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A Lagrangian is degenerate when the Hessian matrix whose elements consist of all the second-order 
derivatives of the Lagrangian with respect to the generalized velocities has (for simplicity) a constant 
singular rank everywhere in the space of the arguments of the Lagrangian. This singularity entails a 
definite number of first-order Lagrange equations, which act as subsidiary conditions on the 
coordinates and velocities. Consistency of these subsidiary conditions with the Langrange system 
requires them to be an invariant system with respect to the second-order Lagrange equations. An 
invariant system is analogous to a system of first integrals except that absolute constants appear 
where arbitrary constants characterize first integrals. The usual definitions of momenta and of 
Hamiltonian make the Hamiltonian a function of the functionally dependent canonical variables 
only. Introduction of the momentum variables into the subsidiary conditions on the coordinates and 
velocities yields under certain circumstances additional subsidiary conditions on the canonical 
variables only. All the subsidiary conditions on the canonical variables are determined before setting 
up the multiplier rule for the canonical equations of motion. The multiplier rule is exploited to 
deduce the invariant system among the subsidiary conditions, the explicit modifications of the 
canonical equations by the other susidiary conditions, and Dirac's formula for the corresponding 
modified Poisson brackets. The modifications are caused by the reduction in the number of 
independent canonically conjugate pairs. A canonical transformation adapted to the subsidiary 
conditions, which is found with the help of Lie's theory of function groups, transforms the canonical 
syst~m from the multiplier rule into a canonical system in terms of physical variables. The invariant 
system is then used to reduce the order of the resulting canonical system by following Levi-Civita. 
This reduced canonical system is suitable for integration or quantization. 

1. INTRODUCTION 

A Lagrangian is called degenerate if the Hessian matrix 
whose elements consist of all the second-order partial 
derivatives of the Lagrangian with respect to the gene­
ralized velocities has (for simplicity) a constant Singu­
lar rank everywhere in the space of the arguments of 
the Lagrangian. For such a Lagrangian the generalized 
momenta satisfy a number of functional-dependence 
relations; this number depends on the rank of the Hes­
sian matrix. Dynamical systems with degenerate 
Lagrangians are of practical importance in physics. 

The first problem in the general study of systems with 
degenerate Lagrangians is to reduce the Lagrange equa­
tions of motion to canonical form and then to write the 
canonical equations in terms of Poisson brackets. The 
theory created by Dirac,! Anderson and Bergmann,2 
Haag,3 and many others is widely accepted as the solu­
tion of the problem. Kundt4 surveys this theory in his 
own development. It must be emphasized, however, that 
this theory falls short of its goals. First, the current 
theory does not correctly handle the subsidiary condi­
tions on the canonical variables that arise from the first­
order Lagrange equations of motion. Since all the sub­
sidiary conditions must be known before setting up the 
multiplier rule, the multiplier rule cannot be used to 
get these conditions. Second, the theory does not ex­
plicitly deduce the effect of the subsidiary conditions 
on the canonical equations of motion and on the Poisson 
brackets. Explicit deduction would facilitate the inter­
pretation of the modifications caused by the subsidiary' 
conditions. Third, the simplification of the integration 
problem by making use of the nature of those subsidiary 
conditions which remain after exploiting the multiplier 
rule has not been done in the general case, only for spe­
cial forms of the conditions. The present paper seeks 
the necessary improvements to the current theory by 
amending an earlier attempt. 5 

Subsidiary conditions occur in two distinct types. The 
familiar type of subsidiary condition can be satisfied 
only by modifying the equations of motion. This modi-
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fication amounts to applying the implicit-function 
theorem to the subsidiary conditions, that is, solving for 
some of the variables in terms of the independent vari­
ables. The other type of subsidiary condition is com­
patible with the equations of motion without the subsi­
diary condition, so that the equations of motion are not 
changed by the subsidiary condition. The variables can 
be treated as independent in spite of the subsidiary con­
dition. But one must adjoin these subsidiary conditions 
to the unmodified equations of motion. Only those solu­
tions of the unmodified equations which satisfy these 
subsidiary conditions are admissible. Such subsidiary 
conditions form what is called an invariant system6 

with respect to the differential equations of motion. The 
notions of invariant relation and of invariant system go 
back to C. J. G. Jacobi, P. Painlev~ (who called them par­
ticularized first integrals), and Levi-Civita,7 who de­
veloped some aspects of the theory of invariant sys­
tems. These important notions are treated in detail in 
the next section. 

Subsidiary conditions appear at two stages in the canoni­
cal formulation of the equations of motion from a de­
generate Lagrangian. The degeneracy of the Lagrangian 
gives rise to first-order Lagrange equations of motion, 
which act as subsidiary conditions on the coordinates 
and velocities. For consistency of the Lagrange equa­
tions these subsidiary conditions must form an invari­
ant system with respect to the second-order Lagrange 
equations. Because of the assumption about the rank 
of the Hessian matrix, these subsidiary conditions can­
not lower the rank of the singular Hessian matrix. So 
there are no other subsidiary conditions on the coordin­
ates and velocities. On introducing the momentum vari­
ables the singular rank of the Hessian matrix yields a 
definite number of subsidiary conditions on the coordin­
ates and momenta. If the momentum variables are in­
troduced into the subsidiary conditions on the coordin­
ates and velocities, the resulting equations in general 
contain some of the velocity variables. But under the 
right conditions they can yield subsidiary conditions on 
the canonical variables only. So one must see whether 
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any additional subsidiary conditions on the canonical 
variables arise in this way. The complete set of sub­
sidiary conditions on the canonical variables can be 
deduced in these two ways. 

The multiplier rule is designed to take account of given 
subsidiary conditions without having to solve them ex­
plicitly for the independent variables. The actual deter­
mination of the multiplier functions in the multiplier 
rule gives the required information on the type of each 
subsidiary condition, the modifications of the canonical 
equations caused by the subsidiary conditions, and the 
consequent modification of the Poisson brackets. Thus 
the modification in the Poisson brackets arises from 
the reduction in the number of independent canonical 
variables. Djoki~-Ristanovi~ and Musicki8 have pointed 
out an error in the earlier deduction5 of the formula 
for the modified Poisson bracket. The correct deduc­
tion gives the same formula as that postulated by 
Dirac.1 Bergmann and Goldberg,9 Mukunda and Sudar­
shan,10 and Hermannll have studied this generalized 
Poisson bracket from other points of view. 

The multiplier rule yields a canonical differential sys­
tem with an invariant system adjoined to it. Finding the 
admissible solutions of these equations is not easy. 
Levi-Civita,7 however, has indicated how, by passing to 
new canonical variables, the invariant system can be 
used to reduce the order of the canonical system and 
thereby simplify the integration problem. The method 
can be adapted to the problem in hand. The required 
canonical transformation, which is also necessary for 
the treatment of the modified Poisson bracket, is ob­
tained with the help of Lie's theory12,13 of function 
groups. Dirac,l Andersonl 4, and B. S. DeWitt (in un­
published work) did this type of reduction only when 
the invariant system had a specially simple form. In 
fact, Levi-Civita's method reduces any general invari­
ant system to this simple form by the above-mentioned 
canonical transformation. The new canonical variables 
in the reduced canonical system directly describe the 
allowed motions of the dynamical system and are there­
fore physical variables of the dynamical system. The 
space of these variables obviously has symplectic 
structure (see Kundt4 and Kunzle 15). 

2. DEFINITION OF INVARIANT SYSTEM 

The summation convention is used in this paper: sum 
over all values of a suffix whenever it occurs twice in 
a term. Denote a collection of variables like 

Xi' i = 1, .. . ,n, 

by x. A function is said to be of class C(m) in a domain 
if all its partial derivatives of order m exist and are 
continuous at each point of the domain. 

Consider the normal system of differential equations 
for the Xi: 

dx· 
-' =/;(t,x), i = 1, ... ,n, 
dt • 

(1) 

where t is the independent variable and the functions!; 
are continuous and have continuous partial derivatives 
with respect to X on an open set in the space of the 
variables t, x, so that the theorem of existence and 
uniqueness of the solution of the differential system 
holds. A function u(t,x) of class C(l) in the domain 
under conSideration and not identically equal to a con­
stant is called an integral of the differential system (1) 
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if it becomes a constant with respect to t on substituting 
for the Xi any solution of the system whose integral 
curve lies wholly in the domain. The value of this con­
stant depends on the choice of the solution of the system, 
being in general different for different solutions; it is a 
function of the initial conditions. The equality 

u(t,x) = C, (2) 

where u is an integral of the system and C is an arbit­
rary constant, is called a first integral of the system. 
All solutions of the system satisfy the first integral. 
A necessary and sufficient condition for .(2) to be a first 
integral of the system (1) is the identical vanishing of 
the total differential of u, or equivalently the total deri­
vative of u with respect to t, by virtue of the system (1). 
That is, 

du(t,x) au au dXi au au 
--=-+--=-+-/;(t,x) ==0. (3) 

dt at aXi dt at axi ' 

Now consider a relation of the form 

v(t,x) = 0, (4) 

where the function v (not identically zero) is of class 
C (1). The relation (4) is assumed to determine a hyper­
surface in the (n + I)-dimensional (t,x)-space. Suppose 
that those solutions of the system (1) whose initial 
values, Le., the values for a particular value of t, satisfy 
the relation (4) satisfy it for all values of t. That is, the 
function v(t,x) takes the constant value zero along those 
integral curves of the system (1) which lie on the hyper­
surface defined by (4). Such a relation is called an in­
variant relation with respect to the differential system 
(1). If the C in (2) is given a fixed value Co' then 

u(t,x) = Co 

is not a first integral. But in the form 

u(t,x) - Co = 0 

it is just an invariant relation of the form (4). This is 
the origin of the name particularized first integral for 
an invariant relation. A general invariant relation does 
not necessarily arise from a first integral in this man­
ner. On the other hand, a first integral can be con­
sidered as a set of col invariant relations corresponding 
to the col values of the constant C. 

An invariant relation differs from a first integral by 
containing an absolute constant instead of an arbitrary 
constant. It defines a property belonging only to a part 
of the solutions of the system. The co n-1 solutions satis­
fying the invariant relation generate a hypersurface in 
the (t,x)-domain, while all the con solutions satisfying a 
first integral fill the whole (t,x)-domain. So a neces­
sary and sufficient condition for (4) to be an invariant 
relation is obtained by demanding that the total differen­
tial of v, or equivalently the total derivative of v with 
respect to t, vanish identically only on the hypersurfac.e 
determined by the invariant relation, Le., the total deri­
vative of v with respect to t vanishes by virtue of (1) 
and by virtue of (4). Thus, 

dv(t,x) = av + ~ fi(t,x) == x(t,x)v(t,x), 
dt at aXi 

where x(t x) is some function of class C (0) at least. If 
the invariant relation is obtained from a first integral 
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by assigning a particular value to the arbitrary constant, 
then the total derivative of v with respect to t is identi­
cally zero, i.e., the function A is identically zero. 

Let 

Vr(t,x) = 0, r = 1, ... ,m, (5) 

where the functions vr(t,x) are of class C(l) in the do­
main considered, be a system of m independent rela­
tions. These relations define a variety in the (n + 1)­
dimensional (t,x)-space. Assume for simplicity that 
this variety is an (n + 1 - m)-dimensional manifold. 
Suppose that 

vr(t,x(t)) = 0, r = 1, .. . ,m, 

for every t along those solutions of the system (1) whose 
initial values satisfy the relations (5), and therefore 
those solutions that lie in the manifold defined by (5). 
Then the system of relations (5) is called an invariant 
system of (1). A necessary and sufficient condition for 
(5) to be an invariant system of (1) is that the total deri­
vative of the system vr with respect to t vanishes every­
where on the manifold defined by the relations (5), Le., 
vanishes in virtue of the relations (5) and not identically 
in (t,x). But any function vanishing on the manifold de­
fined by (5) can be written in the form 

where the At" are suitable functions. Thus the neces­
sary and sufficient condition is that 

i = 1, . .. ,n and r,s = 1, . .. ,m. 

Here Ars(t,x) are suitable functions of class C(O) at 
least. 

The definition of an invariant system extends directly 
to a canonical differential system, since this system is 
also a normal system. For a system of second-order 
differential equations, the invariant system would be a 
system of first-order differential equations with no 
arbitrary constants in them. 

From the definition of an invariant system it is clear 
that an invariant system is compatible with the differen­
tial system. The imposition of relations on x equivalent 
to an invariant system does not affect the differential 
equations for x, which remain the same as if the x are 
free variables. But the invariant system restricts the 
allowed solutions to those lying on the manifold defined 
by the invariant system. 

3. DEDUCTION OF THE INVARIANT SYSTEM 
AMONG THE LAGRANGE EQUATIONS 

Let the Lagrangian of the dynamical system be L (t, q, q). 
Here t is the time; dots denote differentiation with res­
pect to the time t; q represents the generalized coordin­
ates 

qi(t), i = 1, .. . ,n; 

and q represents the corresponding generalized veloci­
ties 

qi(t), i=1, ... ,n. 

For the considerations of this paper it suffices to as­
sume that the Lagrangian L is at least of class C (3). 
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According to definition the degeneracy of the Lagrangian 
L means that the Hessian matrix 

[~J' i,j = 1, ... ,n, 
aqi aqj 

(6) 

everywhere has a constant rank n - rl' where the inte­
ger r1 > 0. 

At the outset no conditions are imposed on the variables 
q, q. So the Lagrange equations of motion are 

.!:...(aL) _ aL = 0, i = 1, .. . ,n, 
dt aqi aqi 

(7) 

or equivalently 

i,j=1, ... ,n. (8) 

The qi can be numbered so that the first n - r1 rows of 
the matrix (6) are its independent rows. Then, by form­
ing linear combinations of the rows with suitable func­
tions of t, q, q as coeffiCients, the last r1 rows of (6) can 
be converted into rows of zeros. In this way the left­
hand sides of the last r1 equations of (8) can be made 
into zeros while the right-hand sides give functions of 
t,q,q. Thus the lastr1 Lagrange equations become 
first-order differential equations, say 

Ba(t,q,q) = 0, a = 1, ... ,r1. 

Assume for SimpliCity that all these equations involve 
at least some of the velocity variables. 

(9) 

The Lagrange equations (7) or (8) were obtained on the 
assumption that the q(t), q(t) were free. But r 1 of these 
equations reduce to the first-order equations (9), which 
form subsidiary conditions on the q, q. For the Lag­
range equations to be consistent with the conditions (9), 
the subsidiary conditions must be of the type that does 
not modify the equations of motion. So the conditions 
(9) must form an invariant system with respect to the 
Lagrange equations. Hence 

must vanish in virtue of the n - r1 second-order differ­
ential equations in (8) and of the first-order equations 
(9), therefore by virtue of all Eqs. (8). Otherwise the 
Lagrange system (7) would be inconsistent. Assume 
that this consistency condition is satisfied. Normally 
the functions Ba must be at least of class C (1); but the 
consistency condition makes them functions of class 
C (2) at least. 

The invariant system (9) restricts the dynamically 
allowed solutions to those satisfying this system. Since 
the invariant system is compatible with the Lagrangian, 
the partial derivatives of L with respect to its argu­
ments can be computed as if the variables are free, 
but the domain of the derivatives is now restricted by 
the invariant system. According to assumption, even on 
this restricted domain the rank of the Hessian matrix 
(6) has the constant value n - r1 • So no other first­
order Lagrange equations exist. Hence the complete 
system of subsidiary conditions on the coordinates and 
velocities consists of the invariant system (9). To satis­
fy the consistency condition, there must be at least as 
many second- order Lagrange equations as there are 
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first-order equations. Thus the rank of the Hessian 
matrix must be at least ~n. 

4. THE MULTIPLIER RULE FOR THE CANONICAL 
EQUATIONS 

The canonical formalism makes the transition from the 
variables t, q, lJ, and the Lagrangian dependent on them 
to the canonical variables t, q,P, and the Hamiltonian 
dependent on them. Here P represents the collection 
of the generalized momentum components Pi defined by 

aL 
p.=-, 
, aqi 

i = 1, ... ,no (10) 

If the Lagrangian is nondegenerate, all the right-hand 
sides are functionally independent in the q, and so the 
implicit-function theorem16 gives all the q uniquely in 
terms of t, q, and p. Then any function of the t, q, and q 
can be expressed as a function of t, q, and p. 

If the Lagrangian is degenerate, then the momentum 
components are functionally dependent, 16, 17 and the 
implicit-function theorem applies only to some of Eqs. 
(10). Since the Hessian matrix (6) has the rank n - r1 , 

the first n - r 1 Eqs. (10) can be uniquely solved (at 
least locally) for the n - r 1 components iIi in terms of 
t, the first n - r1 components P;, and the last r 1 compo­
nents qp Substitute these expreSSions for the first n -
r 1 components q; into the last r 1 equations of (10). Then, 
because of the rank of the Hessian matrix (6), the result­
ing equations yield r 1 relations completely independent 
of the q. Thus the functional dependence of the variables 
P can be stated by expressing the last r 1 components of 
the P as functions of the remaining canonical variables. 
But the functional-dependence relations can be given in 
the more symmetrical form 

rf>b(t,q,P) = 0, b = 1, ... ,r1 , (11) 

where the functions rf>b are of class C (2), since the right­
hand sides of (10) are of class C (2). 

Now introduce the expressions obtained above for the 
first n - r 1 components qj into Eqs. (9). Then one gets 
r 1 equations involving the t, q ,p, and the last r 1 compo­
nents qi' Denote these equations by 

Ba(t,q,p,q) = 0, a = 1, ... ,r1 • (12) 

If these r 1 equations are functionally independent in the 
r 1 components qi' then they cannot yield any conditions 
on the canonical variables only. Suppose, on the other 
hand, that the functional matrix of the Ba with respect to 
the r 1 components qi has the constant rank r 1 - r 2 , where 
o < r2 ~ r 1 , everywhere in the space of the arguments 
!!..f the Ba in (12). Then the functional dependence of the 
Ba and Eqs. (12) together yield r2 subsidiary conditions 
on the canonical variables only. Denote these conditions 
by 

cf>b,(t,q,p) = 0, b' = r 1 + 1, ... ,r3 , (13) 

where one writes 

Thus extra subsidiary conditions on the canonical vari­
ables, caused by the equations of motion, can arise only 
from the first-order Lagrange equations, and that too 
only under the right circumstances. 

In certain examples known in physics, the degenerate 
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Lagrangian does not contain some of the components of 
q. Then the corresponding components of P vanish, and 
the consequent first-order Lagrange equations do not 
contain the same components of q. So these first- order 
Lagrange equations immediately yield subsidiary condi­
tions on the canonical variables only. 

The transition to canonical momenta from the velocities 
introduces two types of subsidiary conditions: those 
like (11) arise from the singularity of the Hessian mat­
rix; and those like (13) arise only under the right cir­
cumstances from the first-order Lagrange equations, 
which themselves follow from the singularity of the 
Hessian matrix. How the conditions originate is of no 
importance in the deduction of the canonical equations 
of motion. But it is important to have the complete set 
of conditions (11) and (13) before deducing the canonical 
equations. The complete set can be written together as 

rf>b(t,q,P) = 0, b = 1, ... ,r3 , (14) 

where the functions rf>b are of class C(2). Assume for 
simplicity that the conditions (14) determine a sub­
manifold in the (t,q,p)-space. This assumption is neces­
sary for the validity of the multiplier rule used below. 

Define the Hamiltonian H as usual by 

H =Piqi - L(t,q,q), i=I, ... ,n. (15) 

Then 

dH = - OL dt - aL dqi + iIidP; + (Pi - a~ )dqi' (16) 
at aqi aqi 

Now use the definition (10) of P in (16). Then (16) be­
comes 

(17) 

Hence it follows that H can be expressed as a function 
of only t, q, and P as a result of introducing the momenta 
through (10). This result is true even when L is de­
generate, because the degeneracy property of L does not 
enter into the deduction of (17). 

Introduce the expreSSions for the first n - r 1 compo­
nents qi into the right-hand side of (15). The last rt. 
components qi yet remain in H, but according to (16) 
these particular iIi occur with the coeffiCients Pi - aLI 
aq;. These coefficients are the left-hand sides of the 
functional-dependence relations solved with respect to 
the Pi' Thus the q variables completely drop out of the 
expression for H when the functional-dependence rela­
tions are taken into account. Denote the expreSSion ob­
tained for the Hamiltonian by Ho(t, q, p). The arguments 
t, q,p in Ho satisfy the functional-dependence relations, 
which are now taken in the symmetrical form (11). The 
multiplier rule enables one to treat all the arguments 
on the same footing. 

Put H = Ho in (17). Now 

aHa aHa aHa 
dHo = -dt + --dqi + - dP;, 

at aqi api 

because dHo can be written in this form even if the 
variables t, q,P are dependent. So Eq. (17) gives 

(
aHa OL) (aHa aL) 0' aHa) - -- + - dt - - + - dqj + qi - -- dPi = O. 
at at aqi aqi api 

(18) 
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Here the t, q,p satisfy the subsidiary conditions (11). 
Hence the differentials dt, dq, dp satisfy the equations 

a<Pb a<P b a<Pb 
d<Pb=--dt + -dqi + -dPi = 0, 

at aqi api 
(19) 

b = 1, ... , r 1 and i = 1, ... , n , 

at points satisfying the conditions (11). Any linear form 
in dt,dq,dP which vanishes at these points must have 
the form Abdcf>b with suitable functions Ab(t,q,P). Thus 
the left-hand side of (18) has this form. So there exist 
suitable multiplier functions A b(t, q,p) at least of class 
C (1) such that 

(20) 

The uniqueness or nonuniqueness of the multiplier func­
tion Ab(t,q,p) associated.with each <Pb depends on how 
dcf>b = 0, or equivalently <Pb = 0, is satisfied. From (20) 
one gets 

• aHo acf>b 
qi =--+ A b -, 

api api 
(21) 

iJL aHo acf>b 
--=--+Ab -, 

aqi aqi aqi 
(22) 

iJL aHo acf>b 
-----+A -

at - at b at ' 
(23) 

b=1, ••• ,r1 and i=1, ••• ,n. 

These equations, expressing the left-hand sides in 
terms of t, q, and p, follow from the definitions (10) and 
(15) and from the rank of the Hessian matrix (6). 

In deducing (21)-(23) the arguments of L were not sub­
ject to any subsidiary conditions. But in the dynamical 
problem under conSideration some of the Lagrange 
equations impose such subsidiary conditions (9). If 
these conditions yield additional subsidiary conditions 
on the canonical variables, then the t, q,p satisfy the 
complete set (14) of subsidiary conditions. In this case, 
the dt,dq,dp satisfy the equations 

acf>b acf>b acf>b 
dcf>b =- + -dqi + -dpi = 0, (24) 

at aqi api 

b=1, ••• ,r3 and i=1, ••• ,n. 

Then instead of (21)-(23) one gets 

• aHo acf>b 
qi = api + Ab ap

i 
' (25) 

(26) 

aL aHo acf>b 
----+A --

at - at b at ' 
(27) 

b=1, ••• ,r3 and i = 1, ... ,n, 
for the dynamical problem. 
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The Lagrange equations (7) can be written as 

• iJL 
Pi=-' 

aqi 

Combining this with the expressions (25) and (26) ob­
tained for qi and aL/aqi in the dynamical problem gives 
the canonical equations of motion in the multiplier-rule 
form 

(28) 

(29) 

b = 1, ... ,r3 and i = 1, . •• ,n, 

to which the relations (14) must be added. The explicit 
canonical equations follow only when the multiplier 
functions Ab are actually determined from these equa­
tions, as is done in the next section. 

The general canonical equation of motion can be written 
in terms of Poisson brackets. The Poisson bracket 
U,17] of two functions W,q,p) and 17(t,q,p) of class 
C (2) is defined by 

Even when t, q,p are not independent, the first differen­
tial of a functiong(t,q,p) of class C(2) has the form 

and so 

(y _ ag + ~ J.. + ag p' 
b - "1, i' 

at aqi api 
i = 1, ... ,no 

Hence the canonical equations (28), (29) yield the general 
canonical equation of motion for g(t,q,p) in the form 

cf>b(t,q,P) = 0, b = 1, ... ,r3' (14) 

Thus the multiplier rule for the subsidiary conditions 
replaces the Hamiltonian Ho by H in the canonical equa­
tions. 

5. EXPLICIT DETERMINATION OF THE 
MUL TlPLIERS 

The conditions (14) in the canonical equations require 
that the canonical equations of motion satisfy the equa­
tions 

<Pb=O, b=1, ••• ,r3 , 

on the submanifold determined by (14). 
conditions give 

• acf>b 
cf>b = - + [<Pb,Ho] + "AJ<Pb, <Pc] = 0, 

at 

From (30) these 

b,c=I, ••• ,r3 • 

(31) 
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Thus the multiplier functions ~ satisfy the nonhomo­
geneous linear system of equations 

(32) 

¢b = 0, b,c = 1, ••• ,r3' 

The coefficient matrix of the linear system (32) is the 
matrix [[ cf>b' cf>cll. The augmented matrix of the system 
(32) is obtained by adjoining the column consisttng of 
the right-hand sides of (32) to the coefficient matrix. 
The system (32) has a solution if and only if the ranks 
of the coefficient matrix and the augmented matrix are 
the same. This consistency condition must be satisfied 
for the multiplier rule to yield consistent canonical 
equations, and therefore for the consistency of the ori­
ginal Lagrange equations. Assume that this consistency 
condition is satisfied. Instead of immediately solving 
the system (32) for the A, however, it is simpler to re­
place the subsidiary conditions (14) by an equivalent 
system whose multiplier functions are easier to deter­
mine. The system (32) suggests the appropriate change. 

Let the rank of the skew-symmetric matrix [[ ¢b' ¢c]] by 
virtue of Eqs. (14) be r4 , where r4 must always be even 
and where r4 :s r3 • H r3 is odd, then the coefficient 
matrix is necessarily singular. Number the cf> so that 
the first r4 rows of the coeffiCient matrix and of the 
augmented matrix are the independent rows of these 
matrices. Then, by forming linear combinations of all 
the rows of these matrices with functions of t,q,P as 
coefficients, all the elements of the last r3 - r4 rows 
of these matrices can be converted into zeros. Hence 
there exist distinct functions IJaz, (t,q,p) at least of 
class C (1) and independent of the cf> such that 

j.lab[ cf>b' ¢cl = [j.labcf>b, cf>cl = 0, (33) 

a cf>b a (J.labcf>b) 
IJaz, - + 1Jaz,[ cf>b,Hol = + [1Jaz,cf>b' Hol = 0, (34) at at 

a =r4 + 1, •.. ,r3, b,c = 1, ..• ,r3, 

by virtue of (14). Equations (33) and (34) suggest the 
suitable equivalent system to replace the subsidiary 
conditions (14). Keep the first r4 equations of (14) un­
changed, 

def 
cf>B = XB = 0, (3 = 1, •.. , r4 , (35) 

but replace the last 13 - r4 equations of (14) by 
def 

Xa = lJaz,cf>b = 0, (36) 

a = r4 + 1, ... ,r3, b = 1, ... ,r3' 

The complete equivalent system (35) and (36) is written 
as 

Xb=O, b=I, ... ,r3 , (37) 

where the functions Xb are independent and of class C (2). 

For the equivalent system (37) the general canonical 
equation (30) for g(t, q,p) becomes 

. ag ] ] g = - + [g,Ho + IIc[g, Xc , 
at 

(38) 

where the IIc are new multiplier functions. The condi­
tions (31) are now 
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(39) 

b,c = 1, ... ,r3. 

According to Eqs. (33)-(37) the Xa have two characteris­
tic properties: 

[Xa, Xb] = 0, (40) 

a =r4 + 1, .•. ,r3, b = 1, ••• ,r3, 

in virtue of the relations (37). Because of these proper­
ties the first r 4 equations of (39) become 

• aXe 
XB = at + [xlI,Hol + lIy[XB' xyl = 0, (42) 

{3,y = 1, ... ,r4 , 

and the last r3 - r4 equations of (39) for the Xa are 
automatically satisfied for arbitrary lIa • 

The system (42) is equivalent to 

(43) 

in matrix notation. The unique solution for the lIy 

follows at once by multiplying both sides of (43) on the 
left by the inverse of the nonsingular skew-symmetric 
matrix [[XB' xyll. Let the nonzero determinant of this 
matrix be t::. and let CB t::. denote the cofactor of the 
element [XB' xyl in t::.. Here CBy is antisymmetric in 
{3, y. Then the inverse of the matrix [[XB' Xy]] is the 
transpose of the matrix [CByl, i.e., the matrix [- CBy ]' 
Therefore the solution of the system (43), or equiva­
lently (42), is given by 

(3,y = 1, .•• ,r4. (44) 

Since the multipliers lIa are arbitrary functions of t, q, and 
p, they can be taken to be zeros. With these values for 
lIa and the expreSSions (44) for liB the explicit general 
canonical equation of motion for any function g(t, q, p) 
in the presence of the subsidiary conditions (37) is 

g = ~~ + [g,xJCBy :~B + [g,Hol + [g,XBlCBy[Xy,HOl, 
(45) 

{J,y = 1, ... ,r4. 

The above deduction shows that the two properties (40), 
(41) are essential for conditions (36) to form an invari­
ant system with respect to the canonical equation (45), or 
equivalently to the canonical system (28), (29). It is not 
surprising that the conditions (36) do not modify the 
canonical equations. The dynamical system admits only 
those solutions of (45) which satisfy the invariant sys­
tem (36) as possible motions. 

In the terminology of Lie, a set of functions is said to be 
in involution if the Poisson brackets of any two func­
tions of the set vanish identically. Analogously, a system 
of equations is said to be in involution if the Poisson 
brackets of any two left-hand sides of the equations 
vanish by virtue of the system of equations. Properties 



                                                                                                                                    

683 S. Shanmugadhasan: Canonical formalism for degenerate Lagrangians 683 

(40) and (41) then assert that the invariant system (36) 
must be in involution with all the subsidiary conditions 
(37). 

6. DEDUCTION AND INTERPRETATION OF THE 
MODIFIED POISSON BRACKETS 

In deducing the canonical equation (45) the subsidiary 
conditions (35) can be satisfied only by choosing the 
multipliers "a so as to make )(a == O. This implies that 
the subsidiary conditions (35) can be satisfied only by 
converting Eqs. (35) into the identities Xa == O. The only 
way these equations become identities is by implicitly 
solving for r4 of the variables in terms of the others. 
Thus the modification in the canonical equations caused 
by the subsidiary conditions amounts to a reduction in 
the number of independent canonical variables. The 
original Poisson brackets were defined as if all the 
canonical variables were independent. So the modified 
canonical equations require modified Poisson brackets 
defined with respect to the reduced number of indepen­
dent canonical variables. The formula for this modified 
Poisson bracket follows from the canonical equation 
(45). 

It is shown in this section that the implicit solution of 
the conditions (35) can take place only with respect to 
~r4 canonically conjugate pairs. This is done by means 
of a canonical transformation adapted to the subsidiary 
conditions. This canonical transformation, which is 
again needed in the next section, is found with the help 
of Lie's theory12,13 of function groups. 

r independent functions of q and p, such that the Poisson 
bracket of any pair of these functions is a function of 
the r independent functions only or is a constant, consti­
tute an r-dimensional function group. If the functions 
contain t explicitly, as in the present work, it is treated 
as a parameter. All functions of the r independent func­
tions belong to the function group. Thus a function 
group is a set of functions with the property that the 
Poisson bracket of any two functions of the set belongs 
to the set. Any set of r independent functions of the 
group completely specifies the group and forms a basis 
of the function group_ Every function group can be trans­
formed to a basis in which the Poisson brackets of the 
basis functions take only the values 0 and 1. Then the 
function group is said to be in canonical form, which is 
the simplest form of a function group. Those functions 
of the function group which are in involution with all 
functions of the group are called singular functions of 
the function group. The Singular functions are in involu­
tion with one another and form a function subgroup 
called the null group of the given group. This null group 
can be at most n-dimensional. Every function group can 
be embedded in a 2n-dimensional function group. In 
particular, any canonical function group can be embed­
ded in a 2n-dimensional canonical function group. It is 
this embedding process that is used here to find the re­
quired canonical transformation. But first it is neces­
sary to replace the subsidiary conditions by an equiva­
lent system whose left- hand- side functions form a 
canonical function group. 

The skew- symmetric matrix 

(3,y=1, ••. ,r4 (46) 

formed with the X of (35) is nonsingular. Therefore, by 
a known property of skew- symmetric matrices, there 
exists a nonsingular matrix 

def 
A = [l\y(t,q,p)] 
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such that multiplication of the matrix (46) on the left 
by A and on the right by the transpose A of A gives the 
skew-symmetric matrix 

(47) 

where 0 is the zero ~r4 x ~r4 matrix and E is the unit 
~r4 x ~r4 matrix. That is, there exists A such that 

[Aay][[Xy' Xo]][AIiEJ = [Jeel, {J,y, 6, E = 1, ... ,r4 • (48) 

This suggests replacing the conditions (35) by the equi­
valent system 

def 
0e = AeyXy = 0, {3,y = 1, ••• ,r4. (49) 

Then (48) becomes 

[[Oe,Oy]] = [Jay], {3, y = 1, .•• ,r4 , (50) 

in virtue of Eqs. (36) and (49). Equations (36) are in 
involution among themselves and with the conditions 
(49). The conditions (36) and (49) equivalent to (14) are 
such that the left-hand sides of this equivalent system 
satisfy the conditions for a canonical function group but 
only by virtue of Eqs. (36) and (49). 

It is known7 ,13 that a system of equations in involution 
can be replaced by an equivalent system of equations 
such that the Poisson brackets of the left-hand sides 
vanish identically and not in virtue of the equations 
themselves. For the present work, however, one needs 
an analogous result applicable to a general system of 
equations like (36) and (49). Schouten and v.d.Kulk (Ref. 
13, Theorem VII. 24) provide such a general theorem. 
This theorem asserts that one can always replace any 
given system of equations in t,q,p by an equivalent sys­
tem of equations such that the functions on the left-hand 
Sides of these equations form a canonical function group 
identically and not by virtue of the equations. 

The considerations of the preceding two paragraphs 
show that, when only a part of the subsidiary conditions 
in t, q, and p, say only Eqs. (11), is known, it is in general 
not possible to get the other equations of the whole sys­
tem, namely Eqs. (13), by forming the Poisson brackets 
of the left-hand sides of the known equations. This cer­
tainly holds when the system of equations contains equa­
tions like (49) or (35). Even if the whole system is in 
involution, the known part may belong to a subgroup and 
the Poisson-bracket operation may yield the subgroup 
but not the whole group. If the known part is part of a 
canonical subgroup (identically), then the Poisson-brac­
ket operation yields no new equations. 

Introduce a new notation for the functions on the left­
hand sides of the system which is equivalent to (36) and 
(49) and which is such that these functions form a cano­
nical function group (identically). Henceforth write 

Let 

denote the singular functions of this canonical function 
group. Let Qf denote the functions corresponding to the 
first half of the 0J3 in (49) and let Pf denote the functions 
corresponding to the last half of the 0a in (49), where 
f = n 2 + 1, ... ,no Then the new equivalent system has 
the form 
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(51) 

e=nl + 1, ... ,n2 , l=n 2 + 1, ..• ,n. 

The Poisson brackets 

[Pe,Pe,] = 0, [Pe,Q,] = 0, [Pe,P,] = 0, ( 

[Q" Qr] = 0, [Q"p!,] = Off" [P"Pr ] = 0, \ 
e,e' =~ + 1, .. • ,n2 , l,f' =n 2 + 1, .. . ,n, , 

(52) 

where Off' is the usual Kronecker symbol, hold identi­
cally and not by virtue of Eqs. (51). 

The Pe , q"p, for the same values of e,1 as in (51) form 
a canonical function subgroup of the 2n-dimensional 
canonical group formed by the q,p. The P,,, Q"P, form 
a canonical function subgroup of the 2n-dimensional 
canonical function group formed by the Q, P into which 
this subgroup can be embedded. The transformation 
from t, q, P to t, Q, P provides the required canonical 
transformation, since it satisfies the necessary and suf­
ficient conditions6 ,13 for such a transformation. (The 
definition of canonical transformations and a necessary 
and sufficient condition for a transformation to be cano­
nical are given in the next section.) 

Now, by performing an eleI1lentary canonical transfor­
mation if necessary, i.e., by renumbering the canonical 
pairs or by exchanging the coordinate and momentum 
in a canonical pair, the Pe must be invertible functions 
of the Pe , and the Qp P, must be invertible functions of 
the q, ,p,. Hence the equations 

Q, = 0, P, = 0, 1= n 2 + 1, ••. ,n, 

must be soluble for the q" p,. Thus the functional 
matrix 

1,1' =n 2 + 1, . .. ,n, 

(53) 

(54) 

must be nonsingular. But Eqs. (53) are equivalent to 
Eqs. (35). Therefore, Eqs. (35) are soluble for the q"p,. 
So the matrix 

aXaJ 
ap, ' 

l=n 2 +1, ... ,n, (55) 

has the same rank r4 as (54) everywhere. Thus every 
nonsingular r4 x r4 submatrix of the functional matrix 

[
aXB 

at 
(3 = 1, ... ,r4 , i=1, ... ,n (56) 

has the particular form (55) in which the partial deriva­
tives are with respect to ~r4 canonically conjugate pairs. 

Since the matrix (55) is nonsingular everywhere, the 
implicit-function theorem guarantees that Eqs. (35) or 
(49) can be solved for the last ~r4 canonically conjugate 
pairs in the form 

q, = glt, ql' ••• , qn
2 
,Pl , ••• ,Pn2), 

P, = h,(t, ql' ... , qn 2'Pl' ... 'Pn 2)' (57) 

I =n 2 + 1, .. . ,n. 
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The multiplier rule for conditions (35) follows from the 
relation 

analogous to (20). This relation implies that the rows 
of the (r4 + 1) x (2n + 1) matrix 

t(
aL + aHo) 
at at 

aXB 

at 

(• aHO) - p.+-
, aqi 

(58) 

(3=1, ... ,r4 , i=l, ... ,n, 

are not independent. Since the rank of the matrix (56) 
is known to be r4 , the matrix (58) also has the rank r4• 
Therefore the multiplier rule also says that only r 4 
columns of the matrix (58), namely the columns contain­
ing the r4 columns of a nonsingular submatrix of (56), 
are independent and that the other columns are linear 
combinations of the independent columns. But, if one 
considers the submatrix (56) of (57), the relations be­
tween the columns are just the relations dXB = 0, which 
are equivalent to XB = 0. So the multiplier rule amounts 
to solving r4 of the differentials dt,dq,dp in the equa­
tions dXB = ° in terms of the other differentials. This 
in turn amounts to implicitly solving Eqs. (35) for the 
r4 dependent variables among the t,q,P in terms of the 
independent variables among the t,q,p. This is equiva­
lent to applying the implicit-function theorem to the 
equations (35). As seen already, this implicit solution 
can take place only with respect to ~r4 canonically con­
jugate pairs in the form (57). From the first row of the 
matrix it also follows that only n 2 eanonically conjugate 
pairs of the canonical equations (28), (29) are indepen­
dent. 

The multiplier rule with the multipliers given by (44) 
ensures that only the n 2 canonically conjugate pairs 
on the right-hand sides of (56) are the independent 
canonical variables of the dynamical system. Any func­
tion of the original t, q ,P then becomes a composite 
function of t and of the n 2 independent canonical pairs. 
So the Poisson bx:acket of any two functions of t,q,p is 
now equal to the Poisson bracket of the corresponding 
two composite functions of t and of the n 2 independent 
canonical pairs. Long ago J. Bertrand considered this 
type of generalized Poisson bracket. This modified 
Poisson bracket evidently satisfies all the properties of 
ordinary Poisson brackets, including the Jacobi-Donkin 
identity. The modified Poisson bracket refers to the n 2 

degrees of freedom of the dynamical system. Since 
Eqs. (35) or (49) become identically zero in determining 
the independent canonical pairs, the new Poisson brac­
ket of the left-hand side of (36) or (49) with any other 
function must vanish identically. 

The expreSSion for the modified Poisson bracket can be 
deduced from (45). The multiplier rule impliCitly ~on­
verts a function/(t, q ,p) into a composite function I of 
t and of the n 2 independent canonicajly conjugate pairs. 
The general canonical equation for I would be 
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dj = aJ + [J,Ho] = aJ + [i,Ho]*. 
dt at at 

(59) 

H~~ [f,Ho]* denotes the modifie~ Poisson bracket . 
[f,Ho] of_the composite functionf and of the compos.lte 
f.unction Ho corresponding to Ho. Note that t occurs .11~ 
f through the original explicit t in the f and the expllcit 
t in the canonical pairs (57). Comparing (59) with (45) 
gives 

-

af afaXy (60) - = - + [g, XB]CBy -at' 
at ~t 

[f,Ho]* = [j,Ho] = [i,Ho] + [f, xalCBy[Xy,Ho]· 

Thus the modified Poisson bracket of any two functions 
~(t, q ,p), 1/(t, q ,p), with the t, q ,p such that XB(t, q ,p) == 0, 
is 

(61) 

a result given by Dirac. 1 This modified Poisson brac­
ket is considered again in the next section. 

7. SIMPLIFICATION OF THE INTEGRATION PROBLEM 
BY PASSING TO THE PHYSICAL VARIABLES 

The multiplier rule has given a canonical system to­
gether with an invariant system. But finding the solu­
tions of this canonical system that satisfy the invariant 
system is in general difficult. For progress in integra­
tion or quantization it is essential to seek a Simplifica­
tion of the canonical system itself by making use of the 
invariant system. 

In the theory of differential equations it is known that 
the order of a normal system of differential equations 
can be reduced if some first integrals of the system 
are known. The reduction in the order is equal to the 
number of first integrals known. One way of carrying 
out this reduction is to pass to a new system of vari­
abIes in which the left-hand sides of the known inte­
grals replace an equal number of the old variables 
while the other variables remain the same as before. 
Levi-Civita7 has extended this result to the case where 
an invariant system replaces the system of first inte­
grals. Levi-Civita7 has also indicated how to carry 
out the reduction when one has a canonical differential 
system (instead of just a normal system) together with 
an invariant system. In this case the change of vari­
ables must be effected through a suitable canonical 
transformation, so that the reduced system is also 
canonical. This method can be adapted to the problem 
under conSideration. 

The properties of canonical transformations6 needed 
for the present work are as follows. Canonical trans­
formations are those invertible transformations of 
the canonical variables to new variables which take 
every canonical differential system into another such 
system. Consider the invertible transformations 

qi = qi(t,Q,P), Pi =Pi(t,Q,P), 

Qi = Qi(t, q,p), Pi = Pi(t, q,p), 

and the nonsingular functional matrix 

[

aQ 
aq 

M= 
ap 
aq 

aQj 
ap 
ap , 

up 
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(62) 
i = 1, ... ,n, 

685 

whose transpose is M. The functions on the right-hand 
sides of (62) are taken to be of class C(2). The trans­
formation (62) is canonical if and only if the 2n xl 
matrix 

[

• aH] 

;~~ 
for an arbitrary Hamiltonian H(t, q,p) of class C (2) is 
transformed into a 2n x 1 matrix of the same form, 
namely 

with a suitable new Hamiltonian K(t, Q, P). A neces­
sary and sufficient condition for the transformation (62) 
to be canonical is that the matrix relation 

MJM = J,JJ 

hold as an identity for some nonzero constant scalar j.I. 

The matrix J here is the same as the matrix (47). This 
condition just states that 

i,j=l, ..• ,n, (63) 

identically. When this condition is satiSfied, the Hamil­
tonian H(t, q,p) goes into the new Hamiltonian K(t, Q,P) 
given by 

K = JJll +R, (64) 

where H is expressed as a function of t, Q, P. The func­
tion R satisfies the identities 

aQi(t,q,P) aR(t,Q,P) 

at aPi 
(65) 

api(t,q,p) aR(t,Q,P) 

at aQi 

where the left-hand sides should be expressed in terms 
of t,Q,P. Hence the functionR is determined by a quad­
rature in Q, P for fixed t, so that an arbitrary additive 
function of t only remains inR, and therefore in K. But, 
since this arbitrary function drops out of the partial 
derivatives aK/aQ and oK/oP, two Hamiltonians that 
differ by a function of t only are equivalent. j.I and R 
depend only on the canonical transformation and not on 
H. Two functions Ht,q,p), 1/(t,q,p) can also be ex­
pressed as functions of t, Q, P. The Poisson bracket of 
these two functions can be evaluated with respect to the 
q, p or the Q, P. Then the two Poisson brackets satisfy 
the identity 

(66) 

where the suffixes indicate the variables with respect to 
which the Poisson bracket is evaluated. Conversely, if 
for any two functions ~,1/ this identity holds for one and 
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the same constant Il, then the passage from the 2n vari­
ables q,P to the 2n variables Q,P is a canonical trans­
formation characterized by the constant Il. In the pre­
sent work the constant Il is taken to be 1. 

The canonical transformation appropriate for the re­
duction has already been mentioned in the preceding 
section. The original subsidiary conditions must be re­
placed by the equivalent system (51) such that the func­
tions on the left-hand sides of these equations form an 
r 3-dimensional canonical function group. This is neces­
sary because one has to satisfy the criterion (63) for a 
canonical transformation. This canonical function group 
is then embedded in a 2n-dimensional canonical func­
tion group. 12, 13 To do this, one first determines the 
r3-r4 functions Qe canonically conjugate to the singular 
functions Pe' Thus one obtains a (2r3-r4)-dimensional 
canonical function group without Singular functions. 
Next one determines the 2~ -dimensional canonical 
polar group of the (2r3-r4)-dimensional function group 
just obtained. This standard procedure may take some 
effort, but it provides the 2n-dimensional canonical 
function group Q, P. This 2n-dimensional group also 
has no Singular functions. The transformation from 
t,q,P to t,Q,P is the desired canonical transformation. 
Here the constant scalar Il is equal to 1. 

Take the canonical equations for the dynamical system 
to be those derived from the multiplier-rule Hamil­
tonian H when the subsidiary conditions have the form 
(51). Perform the canonical transformation 

(t,q,p) 1---) (t,Q,P) 

considered above. Then the canonical equations for the 
Q,P are derived from the new Hamiltonian 

K(t,Q,P) =H +R, (67) 

where H is now expressed in terms of t, Q, and P, and 
R(t,Q,P) is determined from (65) by a quadrature. The 
Poisson bracket of two functions ~,1/ is invariant under 
this canonical transformation, Le., 

(68) 

Now conSider the subsidiary conditions (53). As seen in 
the preceding section, these conditions can be satisfied only 
by making them into identities. Thus the variables 
Qj' Pj drop out of conSideration, and the canonical sys­
tem now refers only to the remaining canonical pairs 

(69) 

The new Hamiltonian Kl is obtained from K(t,Q,P) by 
using (53) in it.5he functions ~(t,Q,P), 1/(t,Q,P) be­
come functions ~,~ depending only on t and the canoni­
cal pairs (69). Thus the Poisson bracket of the reduced 
canonical system, defined with respect to the canonical 
pairs (69), has the truncated form [~, ~]Q .. p. obtained 
from the originai Poisson bracket [~, 1/]~.P Jby omitting 
the contributions from the canonical pairs Qj,Pj' This 
expression for the modified Poisson bracket [~, ~]Q .• P. 

J J 
coincides exactly with that given by formula (61) for 
the subsidiary conditions (53). Evidently the modified 
Poisson brackets of the reduced canonical system satis­
fy all the usual properties of ordinary Poisson brac­
kets. 

The final step is to examine the effect of the invariant 
system 
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(70) 

on the reduced canonical system 

(71) 

obtained above. If the Pe occur in K1 , then they can all 
be included in the contribution (with arbitrary multi­
pliers) from the Pe to K1 • Since this contribution from 
an invariant system is taken to be zero, one is justified 
in assuming that the Pe do not occur in K1 • Then oKd 
oQe also does not contain the Pe • Now the conditions for 
the equations to be an invariant system of the canonical 
equations (71) are that 

e =~ + 1, . .. ,n2' (72) 

by virtue of Eqs. (70). But the second members of (72) 
do not contain the Pe • So Eqs. (72) hold identically. 
Hence Kl does not contain the Qe canonically conjugate 
to the P e • This means that the canonical system has 
been transformed into a system in which the Qe are 
ignorable coordinates and the corresponding conjugate 
momenta Pe are equal to absolute constants instead of 
arbitrary constants as in the usual case of ignorable 
coordinates. 7 Thus the canonical system (71) gets re­
duced to a new canonical system for the independent 
canonical pairs 

k = 1, ... ,~, 

with the new Hamiltonian K2 depending on t and the 
canonical pairs (73). The invariant system (70) must 
be adjoined to this canonical system. 

(73) 

The dynamical system is now described by the canonical 
function group conSisting of the Pe of (70) and the cano­
nical pairs (73). The Pe are the singular functions of 
this function group. The invariant system (70) implies 
that each Pe admits only the single constant value zero. 
The dynamical system admits all solutions Q k , P k of the 
reduced canonical system, and so the canonical pairs 
(73) are phySical variables. Since the Qe are ignorable 
coordinates in the canonical system, the modified Pois­
son bracket obtained earlier turns out to be a Poisson 
bracket defined only with respect to the canonical pairs 
(73). The symplectic structure of the space of t and of 
the canonical pairs (73) is evident.4,15 The reduced 
canonical system in the physical variables is quite suit­
able for integration or for passing to the quantum 
theory. 
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Ordinary quantal conservation laws are associated with null operators for time rate of change and 
are valid for causal evolution of the system through either pure or mixed states. There is, however, 
a larger class of quantal constants of the motion, some of which are conserved only for pure state 
evolution. After an analysis of the theoretical origins of these exotic conserved quantities, several 
illustrations are presented with empirical interpretations based on the quorum theory methods used 
in Paper I. 

1. ORDINARY CONSERVATION PRINCIPLES 

The usual procedures for the identification of conserved 
quantities in quantum physics are based strongly on 
analogies to elegant classical schemes for obtaining 
constants of the motion. Thus, the formal parallelism 
between algebraic properties of Poisson brackets and 
quantal commutators is often exploited in the search for 
conserved quanta I observablesj similarly, Noether's 
theorem is routinely extended to quantum field theory 
as a means of finding expressions for conservation laws. 
However, because these methods rely so fundamentally 
upon the classical framework, they fail to generate all 
classes of quantally conserved measurable quantities. 

To see why this is the case, it is necessary to recall the 
rather different relationships between data and theore­
tical observables that distinguish classical and quantal 
physics. Consider mechanics. In the classical case, 
observables are represented as functions of state 
(phase) and the numerical values of these functions are 
identified in principle with numerical data. A constant 
of the motion is then simply a phase function whose total 
time derivative vanishes, the consequent fixed value of 
the function being equal to the constant measured value 
of the observable represented by the function. 

In quantum mechaniCS, on the other hand,observables 
are represented by Hermitian operators whose relation 
to data is more indirect. The testable assertions of 
quantum theory do not refer to "values" of observables, 
but, rather, to mean values of statistical collectives of 
data gathered from ensembles of identical experiments. 
Thus, to say in quantum mechanics that an observable A 
is "conserved" can mean, in terms of data, nothing more 
than that (A\, the mean value computed from A-data 
referring to time t1' is equal to (A)2' computed from A­
data associated with t 2' where t land t 2 are arbitrary. 

To emphasize the difference between this quantal state­
ment of conservation and that usually implied in classical 
theory, we shall call the classical version point-by-point 
conservation and the quantum idea conservation-in-the­
mean. Crudely stated, a point-by-point conservation law 
asserts that" at every measurement the conserved obser­
vable has a definite (unique) value which is independent 
of time," whereas conservation-in-the-mean requires 
only that "the mean value of measurement-results on the 
observable is independent of the time lapse between pre­
paration and measurement" . 

Since point-by-point conservation is in fact an unphysical 
concept, at best an abstract idealization from the facts of 
life in the physical laboratory , it could be argued cogently 
that conservation-in-the-mean with its realistic statis­
tical statements should be acceptable whether one is using 
classical or quantum theory. Nevertheless, ordinary 
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quantal conservation theory attempts to mimic its classi­
cal counterpart in the following well-known manner. 

With every Hermitian operator A there is associated 
another such operator called the "time rate of change of 
A" (symbol dA/dt) and defined by 

dA = ~ [A H] + aA 
dt iii' at 

(1) 

where H is the Hamiltonian of the system, and aA/a t 
denotes the time derivative of the operator A, should A 
be defined with intrinsic time dependence. The physical 
significance of dA/dt rests on a theorem which estab­
lishes that the time derivative of the mean value of A 
(a number empirically obtainable by computation from 
A-data) is numerically equal to the quantally calculated 
mean value of the operator dA/dt. 

Because the form of (1) is reminiscent of the analogous 
classical Poisson bracket relation from which the neces­
sary and sufficient condition for the point-by-point con­
servation of a physical quantity is immediately evident 
(vanishing of bracket plus intrinsic derivative), conven­
tional quantum mechanics normally declares a conserved 
observable A to be one for which the operator dA/dt is 
null. Usually aA/a t is zero and the criterion for ordi­
nary conservation becomes Simply the vanishing of the 
commutator [A,Hl. 

Since point-by-point conservation is meaningless in 
quantum phYSiCS, the latter standard formulation of quan­
tal conservation theory is overly restrictive. In fact, 
the vanishing of dA/dt is a sufficient but not a necessary 
condition for A to be conserved-in-the-mean. We shall 
refer to the mean of an observable which satisfies this 
sufficient condition as an ordinary conserved quantity. 

Consequently, as we shall demonstrate below, there exist 
operators A, for which dA/dt is not the null operator, 
but which nevertheless are conserved-in-the-mean. 
Moreover, we shall find that there exist time-indepen­
dent nonlinear combinations of several quantal mean 
values, none of which is individually conserved in any 
sense. We call such extraordinary quantal constants of 
the motion exotic conserved quantities. 

Fo!' later reference, one characteristic feature of ordi­
nary conserved quantities should be especially noted: 
If dA/dt vanishes, then (A) is time-independent regard­
less of whether the evolving quantum state is pure or 
mixed. By contrast, there are exotic conserved quan­
tities which are constant only for pure state evolution. 

2. EXOTIC CONSERVED QUANTITIES 

In Paper I we reviewed the concept of quoruml and indi­
cated how elements of the statistical matrix could be 
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expressed as functions of quorum means. Hence, if 
some algebraic combination of the matrix elements were 
invariant under temporal evolution, that combination 
could be physically interpreted using quorum theory and 
a conserved quantity would thereby be identified as a 
function of the quorum means. 

A. Conservation of the statistical determinant 

The causal evolution of a statistical operator p is effect­
ed by a unitary evolution operator U determined by the 
system Hamiltonian; thus 

From (2) and the theory of determinants it follows 
immediately that 

i.e., the statistical determinant is a constant of the 
motion. 

(2) 

(3) 

Naturally, this theorem will produce an interesting con­
served quantity only for finite-dimensional Hilbert 
spaces. 

B. Pure state conservation of statistical minors 

In our study of definiteness inequalities in Paper I, we 
observed that the principal minor determinants of the 
statistical matrix can be of special significance. It was 
noted in particular, that for pure quantum states all such 
minor determinants of dimension exceeding unity vanish. 
Now from (2) it is readily shown that p(t2 ) will be pure 
if p (t l ) was pure; i.e., pure states evolve into pure states, 
a well-known quantal theorem. Hence jor pure state 
evolution, the quorum means occurring in any prinCipal 
minor must vary in time in such a manner that the minor 
determinant remains fixed at zero. We have, therefore, 
a prolific source of measurable quantities conserved 
during pure state evolution. 

The question now arises as to whether the minor deter­
minants are also conserved in the time evolution of 
mixed states. Investigation shows that while it is pos­
sible in specific instances for minor determinants to 
be conserved for both pure and mixed states, in general 
only the pure state conservation law holds. 

For example, consider a three-dimensional Hilbert 
space. Let the initial statistical matrix be 

(

w a b) 
(P(f 1 » = a* x c 

b* c* y 

and let the evolution matrix for the time interval of 
interest be 

o 
o 
1 

After substituting (4) and (5) into (2) we obtain 
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(4) 

(5) 

(6) 

The upper left minor determinant is conserved only if 

wx -\a\2 =wy _\b\2. (7) 

Certainly (7) is not generally true; it essentially de­
mands the equality of two of the principal minor deter­
minants of p(t l ), a necessary condition only if p(t l ) is 
pure. 

We conclude that the principal minors of the statistical 
matrix, when interpreted in terms of quorum means, will 
provide a family of rather anomalous constants of the 
motion, always conserved in pure state evolution but not 
necessarily conserved otherwise. Thus, the pure state 
definiteness equalities exhibited in Paper I are examples 
of exotic conservation laws. 

C. Conservation of functions of p 

The mean value of any function of p,F(p), is a conserved 
quantity, regardless of whether or not dF(p)jdt is null. 
For example, consider F(p) = p2: 

dp2 = 1. [p2,H] + op2 
dt ill 0 t 

= 1. [p2,H] + 2p ap • 
(8) 

in at 

According to the quantal Liouville theorem, 

Hence, 

ill dp2 = p2H _Hp2 + 2pHp - 2p2H 
dt 

(9) 

= - p2H + 2pHp - Hp2 = [[p,H], p] ~ O. (10) 

Thus,p2 is not conserved in the ordinary (classically 
inspired) sense because its associated time rate of 
change operator fails to vanish. Nevertheless, (p2) is a 
constant of the motion due to a property of the trace 

ill !!:.. (p2) = in(d
P2

) 
dt dt 

== ill Tr{p(-p2H + 2pHp _Hp2)}. (11) 

Since Tr(AB) = Tr(BA), the right side of (11) is zero, 
even if dp2jdt ~ O. 

Similarly, it can be shown that the mean value of any 
function of p is conserved. A famous case in point is 
lnp, whose mean value is proportional to the entropy in 
statistical mechanics. 

It is possible to relate the conservation of the statistical 
determinant discussed above to this idea that functions 
of p generate exotic constants of motion. If there exists 
an operator D(p) such that 

(D(p» == Tr[pD(p)] = detp, (12) 

then the conservation of detp could be regarded as a 
consequence of the fact that detp is the mean value of a 
function of p. 

In general, many operators D(p) can be found which 
satisfy (12). Let the eigenvalues of p be {will and of D(p) 
be {dill. Since detp is the product of the eigenvalues of 
p, and p and D(p) are both diagonal in the same matrix 
representation, (12) may be written as 
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N 

w 1w 2 •• ·wN = E w"d" , 
"=1 

where N is the dimensionality of the Hilbert space. 

One solution of (13) is given by 

k = 1}. 
k "" 1 

Many other solutions could be obtained similar ly by 
inspection of (13). 

3. ILLUSTRATIONS 

(13) 

(14) 

Examples of exotic conserved quantities are presented 
below in the same format used for definiteness inequali­
ties in Paper I. 

A. Spin-% system 

Quorum: ax,ay,a z ' 

Statistical matrix: 

1(1+(aZ> 
(p) ="2 (ax) + i(a) 

Conserved statistical determinant: 

(15) 

(16) 

From the time independence of (16) it follows that the 
quantity 

2:: == (a )2 + (a )2 + (a )2 x y z (17) 

is conserved. It is also possible to establish the con­
stancy of (17) by standard manipulations, starting from 
the observation that 

d (ax + a y + a z )2 --"---"---- = O. (1S) 
dt 

B. Harmonic oscillator with 2-level energy cutoff 

(For a short explanation of the concept of cutoff obser­
vable,2 consult Paper I.) 

Quorum: x,p,H = (p2/2m) + (mw 2/2)x2. 

Statistical matrix: Let Pc denote the 2 x 2 nonzero sub-

-i[S(K) - (K2) - 15] t[2(X) - (Z) 

- i (2(P) - (Q»] 

Pc = t[2(X) - (Z) H6(K) - (K2) - 5] 

+ i(2(P) - (Q»] 

t[(1/;i2 «Y) - (K» (1/2{2) [( Z) - (X) 

+ i(A)] + i«Q) - (p»] 

where 

X == (2mw/n)1/2x, Y == (2mw/1i)x 2, 

Z == i(2mw/n)3/2 x 3, 

P== (2/mnw)1/2p, A = (1/n{2)(xp +px), (24) 

Q == t{2/mnw)3/2p3, 

K == (2/nw)H, K2 = [4/(nw)2]H2. 
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matrix of p. The cutoff is assumed to occur after the 
two lowest energy levels: 

(
3 - (K) 

Pc = t (X) + i (P) 

where 

(X) - i (P») , 

-1 + (K) 
(19) 

K== ~H,X== (2mw)1/2x,p==(_2_)1/2p. (20) 
nw n mnw 

Conserved minor determinant: The submatrix is known 
to be correct only for times when the cutoff exists. 
However, since the cutoff is in the energy and the energy 
probability distribution for the OSCIllator is time-inde­
pendent, we conclude that (19) is valid at all times. 

According to the theory of Sec. 2B, detp c is conserved 
for all pure state evolutions. Since detpc contains the 
mean value of H, which is conserved in the ordinary 
sense, it follows that the terms in detp c not containing 
(H) must be separately conserved. 

Thus, our theory predicts that the quantity 

t(X)2 + (P)2) = mw (x)2 + _1_ (p)2 
2n 2mnw 

= (1Zw )-1& «x), (p», (21) 

with 

&«x), (p» == ~:: + m~2 (x)2, (22) 

will be conserved in pure state evolution of the cutoff 
harmonic oscillator. The final result is not new. It is 
well known that the harmonic oscillator meets the re­
quirements of Ehrenfest's theorem,3 hence the classical 
energy function (22) with quantal means as arguments 
is conserved for all types of time evolution, including 
the pure state, cutoff case of the present example. Note 
that & is not the same thing as (H); there is no single 
Hermitian operator associated with & yet it is a mean­
ingful physical quantity. 

C. Harmonic oscillator with ~-Ievel energy cutoff 

Quorum: x,x 2,x3,p,p3,xp + px,H,H2. 

Statistical matrix: Let Pc denote the 3 x 3 nonzero sub­
matrix of p. The cutoff is assumed to occur after the 
three lowest energy levels. 

t[(1/{2) «Y) - (K» 

- i(A)] 

(1/2{2) [( Z) - (X) (23) 

- i«Q) - (p»] 

-H (K2) - 4(K) + 3] 

Conserved minor determinant: Consider the upper left 
2 x 2 minor of Pc' The diagonal elements, being func­
tions of H, are conserved separately. Hence we may 
assert that, at least for pure state evolution, the follow­
ing quantity is a constant of the motion: 

Al == [2(X) - (Z)]2 + [2(P) - (Q)]2. (25) 
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Similarly, from the lower right 2 x 2 minor another 
conserved quantity may be derived: 

11.2 == [(X)- (Z)]2 + [(p) - (~)J2. 

Subtracting 11.2 from 11.1 and simplifying, we get 

(26) 

11.3 = 3(X)2 + (p)2) - 2(X) (Z) + (p) (Q»), (27) 

which is of course likewise conserved for pure state 
evolution. But, 

(X)2 + (P)2 = 4(liw)-18(x), (p»), (28) 

where 8 is defined as in (22). 

Recalling again that 8 (x), (p») is a constant of the mo­
tion because of Ehrenfest's theorem, we conclude that 
the following combination of quorum means is an exotic 
conserved quantity at least for pure state evolution 

A == ~2 (X) (Z) + (P) (~») 
31i 

= (mw)2(x) (x3) + (mw)-2 (p) (p3). 

J. Math. Phys., Vol. 14, No. 6,June 1973 

(29) 

Note that A is a nonlinear function of four quorum means 
and that A has not been obtained by finding an operator 
L such that 

(L) = A, dL 
dt = O. (30) 

Additional exotic conserved quantities for this system 
could similarly be generated from the remaining two­
dimensional minor and from the three dimensional 
minor determinant (det pc)' 

D. Spino' system 

Several exotic conservation laws may be obtained by 
calculating the determinant and minor determinants of 
the statistical matrix given by (20) in Paper I. 

'Work supported by Research Corporation. 
lW. Band and J. L. Park, Found. Phys. 1, 211 (1971). 
2J. L. Park and W. Band, Found. Phys. 1,339 (1971). 
3 A. Messiah, Quantum Mechanics (Amsterdam, North-Holland, 1961), 

p.217. 
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The problem of accidental degeneracy in quantum mechanical systems has fascinated physicists for 
many decades. The usual approach to it is through the determination of the generators of the Lie 
algebra responsible for the degeneracy. In these papers we want to focus from the beginning on the 
symmetry Lie group of canonical transformations in the classical picture. We shall then derive its 
representation in quantum mechanics. In the present paper we limit our discussion to the anisotropic 
oscillator in two dimensions, though we indicate possible extensions of the reasoning to other 
problems in which we have accidental degeneracy. 

1. INTRODUCTION 

The subject of accidental degeneracy in quantum mech­
anical systems, Le., degeneracies not associated with 
obvious groups of symmetries, has fascinated physicists 
for many decades. The two classical problems in this 
field have been the isotropic harmonic oscillators and 
the particle in a Coulomb potential. The nature of the 
Lie algebra responsible for the accidental degeneracy 
in these problems has been known for a long time. 1, 2 

However, the Lie groups of canonical transformations 
generated by these Lie algebras, apart from their geo­
metrical invariance subgroups, have been discussed only 
recently. 3 ,4 

Besides the problems mentioned, there are others that 
present features of accidental degeneracy in the quantum 
picture. The question is then raised about general pro­
cedures for obtaining the Lie groups of canonical trans­
formations responsible for these features. 

To be able to focus on these procedures we decided to 
analyze systematically three simple problems in two 
dimensional configuration space that have accidental 
degeneracy: (1) the anisotropic oscillator when the ratio 
of the frequencies is rational, 1,5,6 (2) the isotropic os­
cillator constrained to a sector of the plane of angle 'TTl q 
with q integer, (3) the Calogero problem7 of particles 
moving in one dimension and interacting through poten­
tials that depend both in the square and the inverse 
square of the distance between the particles. When we 
are dealing with three particles and eliminate the center 
of mass this problem can be reformulated in a two di­
mensional configuration space. 

In this and the following paper we analyze cases (1) and (2), 
reserving the Caloger07 problem for a later publication. 
While we shall be discussing very special systems, we 
will continuously try to keep in mind the general ideas 
behind these problems to see what is the information 
they supply on the abstract question of Lie groups of 
canonical transformations and accidental degeneracy. 

2. ACCIDENTAL DEGENERACY IN AN ANISOTROPIC 
OSCILLATOR WHOSE FREQUENCIES HAVE A 
RATIONAL RATIO 

The anisotropic oscillator whose frequencies have a ra­
tional ratio has been extensively discussed in the litera­
ture. 1 •5 •6 In the pioneering work of Jauch and HilP the 
generators of the Lie algebra for both the isotropic and 
anisotropic oscillator (in the latter case for the two di­
mensional problem where the ratio of the frequencies 
was 1: 2) were obtained in the classical picture. Dem­
kov 5 then discussed the different subsets of the set of 
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states of the anisotropiC oscillator that have the fami­
liar degeneracy associated with SU(2), and obtained the 
generators of this group in the quantum picture. Cis­
neros and McIntosh6 greatly extend and complement 
the analysis in their search for a universal symmetry 
group in two dimensions. 

From these and other papers it would appear that further 
discussion of the problem is unnecessary. The present 
approach differs though in that it goes directly into the 
determination of the canonical transformation that in the 
classical picture maps the anisotropic oscillator on the 
isotropic one. As the latter has a symmetry group of 
linear canonical transformations3 that are a representa­
tion of SU(2), we can combine them with those that give 
the mapping, to obtain the symmetry group of the aniso­
tropic oscillator. Once the classical picture is clear we 
can pass to the creation and annihilation operators in the 
quantum picture which have different forms for the dif­
ferent subsets of states mentioned in the previous para­
graph. 5 From them we can construct the generators of 
theSU(2) group responsible for the accidental degeneracy 
of the two dimensional anisotropic oscillator whose fre­
quencies have a rational ratio. 

Besides its intrinsic interest, the present approach pro­
vides part of the ground work required in the next paper 
where we analyze the accidental degeneracy of the oscil­
lator in a sector of angle 111 q. It may also be useful in 
other problems7 that have an energy spectrum similar to 
that of the anisotropic oscillators. 7 

Let us consider now a particle of mass unity moving in a 
plane under the influence of a quadratic potential whose 
frequencies in the Xi' i = 1,2, directions are Wi' The 
Hamiltonian is then 

H = ~ (P~ + w~Xf) + ~ (P~ + w~X~). (2.1) 

We shall assume, furthermore, that 

(2.2) 

where kl' k2 are relatively prime integers. Without loss 
of generality we may take w = lor, equivalently, 

i = 1,2. (2.3) 

We now introduce creation and annihilation variables 
under the definitions 

i = 1, 2. (2.4) 
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In the quantum mechanical picture where [Xi,Pj ] = i{jij 
(we taken = 1), the variables 1)i '~i become operators and 
the Hamiltonian (2. 1) takes then the form 

The eigenstates of H are given by 

1"1"2> = ("I! "2!f1/21)~11)110), 

where "I' "2 are nonnegative integers and 10) is the 
ground state 11-1 / 2 exp[-i (X~ + x~)]. 

(2.6) 

We now proceed to divide the set of states (2. 6) into sub­
sets characterized by a pair of indices (A1> A2) given by 

i\; = 0,1,2,'" k i - 1, i = 1, 2.< (2.7) 

From the range of values of the i\ i we conclude that 
there are k1 k2 different subsets of states, which can be 
characterized by the kets 

(2.8) 

for given i\1' i\2 restricted as in (2.7) and for arbitrary 
nonnegative n 1 , n2' Immediately we see that the states 
(2.8) are eigenstates of H with eigenvalues 

and, hence, those members of the subset (2.7) for which 
n 1 + n 2 is the same have equal energy and give rise to 
accidental degeneracy. It is important to stress that the 
accidental degeneracy is present only for states within 
the subset labelled by (Al' A2) and not for those belong­
ing to different subsets even if their n 1 + n 2 happen to 
be the same. We note also that each subset of states can 
be put into one-to-one correspondence with the full set 
of states of the isotropic oscillator. Thus, we can speak 
of k1 k2 copies of the fundamental degeneracy pattern: 

The question of what is the Lie algebra and the Lie group 
responsible for this accidental degeneracy then arises. 
We shall endeavor to answer it both in the classical and 
quantum picture in the next sections. 

3. THE SYMMETRY LIE ALGEBRA AND GROUP FOR 
THE CLASSICAL ANISOTROPIC OSCILLATOR 

We proceed first to analyze the classical system. The 
Hamiltonian then has the form (2. 5) where we suppress 
the last two constant terms and in which 1); ~; are the 
combinations (2.4) of classical coordinates' and momenta. 
We shall introduce a canonical transformation which maps 
this Hamiltonian to another one corresponding to an iso­
tropic harmonic oscillator where the Lie algebra of the 
symmetry group is well known. 3 

Before proceeding with our analysis, we note that from 
(2.4) the classical Poisson bracket of two observables 
F, G can be written as 

{F, G} = 6( aF Y..Q _ ~~) = i6(aF ~ _ aF~) 
i O/Xi aPi apiax; i a1)i a~i a~i a1)i 

(3. 1) 

which implies that {1)j> ~k} = i{jjk' Thus, if we have 1)}, ~; 
as fun~tio~s 1) i' ~ k such that {1)j, ~;} = i{jjk' we can be sure 
that Xj' P j defmed as 

X;=(1/ft"),(I7;+ ~;), Pj= (i/V2),(1);- ~;), j= 1,2 

(3.2) 
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are canonically conjugate. If ~; is also the complex con­
jugate of 1);, the canonical transformation is real. 

We now consider the following canonical transformation 
in the classical picture 

, _ k -1/2 ( I: )(1-ki)/2 k; I: : = I: .ki k ~1/2 (1).~ .)(1-ki)/2. 
1)i- i 1)i"'i 1)i' "'t "t t , t 

(3.3) 
From (3. 1) we see that {1)~, ~~} = io k and, beSides, as 
I: * . 1:' '* J F th J "'i = 1)i we obta.J.n "'i = 1);. ur ermore, 

Thus (3. 3) is a real canonical transformation that re­
duces the Hamiltonian (2. 5) to that of an isotropic har­
monic oscillator. 

The symmetry group3 for the two dimensional isotropic 
harmonic oscillator is the unitary group U(2) whose 
generators are 

1); ~ ; ~ i, j = 1, 2 (3.5) 

and for which the Lie algebra is determined by the Pois­
son brackets 

(3.6) 

The Lie symmetry group of the anisotropic oscillator 
relates the creation and annihilation classical variables 
1i i' ~ i to 1) i' ~ i through the following steps: First, invert­
ing the relations (3.3) and writing all variables with a 
bar above we get 

- k1/2 - '(k.+1)/2k./: '(k.-1)/2k. 
1)i= i 1)i' t"'i' " 

(3.7a) 

Then we note that 1i;, ~ ~ are related to 1):, ~; by a unitary 
transformation generated by (3. 5) and, thus, we can 
write3 

~;=6U7j~;' (3. Th) 
J 

where II uijll is a 2 x 2 unitary matrix and II urll is its 
complex conjugate. Finally, 1); , ~; are relatei to 1) i' ~ 
through (3.3), which we can also write as J 

, _ k-1 / 2 (ki +l)/2 I: (1-ki )/2 
1)i- i l7i "'; , 

~ : = k ~1/2 ~ (k;+1)/21) (1-ki )/2. 
1. J 1, 1-

(3.7c) 

It is clear that the full transformation (3.7) leaves the 
Hamiltonian (3.4) invariant and, thus, is a realization of 
U(2) which is the symmetry Lie group of the anisotropic 
oscillator. We can then make use of the transformations 
(2.4) and their inverse to express the elements of this 
group as real canonical transformations. 

Having analyzed the classical Lie algebra and symmetry 
group, we turn now our attention to the quantum picture. 

4. THE GENERATORS AND THE UNITARY 
REPRESENTATION OF THE SYMMETRY GROUP 
IN THE QUANTUM PICTURE 

In the quantum picture the creation and annihilation vari­
ables 1) i> ~; become operators. Therefore, 1);, ~; of (3.3) 
must also be expressed as operators that act on the 
states (2.7). As 1)i' ~i do not commute, there are am­
biguities in the translation of the classical relations 
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(3.3) into operator form. How can we get rid of these 
ambiguities? We shall use the isotropic oscillator as a 
guide. In there k1 == k2 == 1, implying A1 == A2 == 0, so that 
we have a single set of states of the form (2.7), Le., 
In In2). At the same time, when ki == k2 == 1, 17; == 17p 
~; == 17 i' ~: == ~ i' Thus, in the isotropic case we have 

17~lnIn2) = (n 1 + 1)I/21n1 + 1,n2), 

17~lnIn2) == (n 2 + 1)I/2In1,n2 + 1), 

~~ln1n2) == nF21n1 - 1,n2), 

~~ln1n2)==n~/2Inl'n2-1). 

(4.1) 

For the anisotropic case we require the operators 17; , ~ j 
to have the same effect on each subset of states In1k1 + 
A1' n2k2 + A2 > characterized by fixed A1' A2' This would 
automatically3 guarantee that the generators 17;~; of U(2) 
connect the states (of the subset of given A1' A2 ) lor 
which n 1 + n2 is fixed, i.e., of the same energy, showing 
that this symmetry group is responsible for the acciden­
tal degeneracy in the anisotropic oscillator whose fre­
quencies have a rational ratio. 

For fixed A 1, A 2 we shall now define the creation and an­
nihilation operators 17:, ~; as 

(4.2a) 

(4.2b) 

We claim that (4. 2) are the right quantum analogies of 
(3.3) when applied to the eigenstates (2.7) of the number 
operators 17 i~ i' i == 1, 2. First, they are well defined in 
this basis. Second, the classical limit Ii -'> 0 of (4.2) is 
(3.3) as can be seen by keeping Pi and w in the notation. 

We now apply 17:i. to the state 

17~ In1k1 + A1' n 2k2 + A2) 

-1/2( 112 ) == k1 171 ~1 - AI) [(171 ~1)(171 ~1 - 1 ... 
-1/2 I (171~1 - k1 + 1) [(n 1k 1 + A1)!(n2k 2 + A2)q-1 2 

X ("1+1)k1+A1 "2 k2+A21 0) 
111 112 

== (n 1 + 1)1/2{[(n1 + 1)k 1 + Ad![n2k2 + A2]!} -1/2 

x 171 (n1+1)kl+A1 172"2 k 2+ A2 10) 

1/21 =(n 1 +1) (n1+1)k1+A1,n2k2+>'2)' (4.3) 

In a similar fashion, we can apply 17~, ~:i., ~ ~ to (2. 7) and 
we get kets in which, respectively, n 1, n2 -'> nl> n2 + 1; 
n l' n 2 -'> n 1 - 1, n2; n l' na -'> n 1, n 2 - 1, multiplied by fac­
tors (n 2 + 1) 1/2, n F2, n~/2. It is important to stress that 
for each set (>. 1>' 2) we have different 17;, ~; as indicated 
in (4. 2). In particular, (4. 3) does not hold if the A's for 
the operators and the kets do not match. 

Let us introduce, for fixed>. v A 2' a shorthand notation for 
the ket (2. 7) of the form 

(4.4a) 

in which 

(4.4b) 
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Furthermore, we denote the generators of our SU(2) 
symmetry group by the notation 

T+ == T1 + iT2 == 17:i.~~, 

T_= T1 - iT2 = 17~~:i.. 
T3 = ~(17:i.~:i. - 17~~~), 

From (4. 3) and similar relations, we obtain then 

{j'rn'IT±Urn}= [(j 'f rn)(j ±rn + 1)P/20jj,Omm" 

(4.5) 

{j'm'IT3Ijrn} = moJj,omm" (4.6) 

thus seeing that in each of the k1k2 subsets of states of 
the anisotropic oscillator with fixed >'1' >. 2' the matrix 
elements of the generators of SU(2) have the standard 
form. 

We can now turn to the question of the unitary representa­
tion of the SU(2) symmetry group in the quantum picture. 
In the usual way, we defineS 

(4.7) 

and have 

R (0, (3, ,,) Um}A A == L; Urn l A ~~'m(O'(3y), 
1 2 m' 1 2 

(4.8) 

where the :.1)' s are the Wigner matrices. S We stress the 
fact that both Urn} and Ijrn '} [as well as the operator 
R( 0', (3, y)] in (4.8) correspond to the same subset charac­
terized by a fixed A l' A 2' by now adding a subscript>. 1A 2 
to the kets Ijrn}. 

We, furthermore, note that 

(4.9) 

Actually, the matrix element (4. 9) is different from 0 
only if 

but as Ai' A; = 0,1,'" k i - 1, the Eq. (4.10) has a solu­
tion only when ni == nj, Ai == Ai' 

From (4.8), (4. 9) we then reach the conclusion that the 
unitary representation of the SU(2) symmetry group re­
sponsible for the accidental degeneracy, with respect to 
the eigenstates (2.7) of the Hamiltonian A, is given by 

"A,{j'm'IR(a,(3,y)ljm}, A == O"A O", OJ·'J·:.1)~'m(a(3y). 
"-I 2 "I 2 "-1 1 "- 2 A 2 

(4.11) 

We have obtained, from (4.2) and (4.5) the generators of 
the SU(2) group and from (4. 11) its unitary representa­
tion. In the next section we analyze the general conclu­
sions that one can draw from the complete analysis of the 
group responsible for the accidental degeneracy of the 
anisotropic oscillator. 

5. CONCLUSIONS 

From the analysis of the problem of accidental degeneracy 
in an anisotropic oscillator system whose ratio of fre­
quencies is rational, one possible general procedure 
emerges. 
We first must solve fully the quantum mechanical prob­
lem and see what is the structure of the set of states 
that have the same energy. If this happens to be a 
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structure that we normally associate with an SU(2) 
group, i.e., we have sets of states that have degeneracy 
1,2,3,4, •.• , we can look into the possibility of finding 
a classical canonical transformation that maps the 
Hamiltonian of the problem into that of a two dimen­
sional harmonic oscillator. If the structure of acciden­
tal degeneracy is similar to that of other well-known 
problems in mechaniCS, the classical canonical trans­
formations we may look for is the one that maps our 
problem into the well-known one. 

Once we have this canonical transformation we can re­
write the generators of the Lie Algebra of the well­
known problem in a way that makes them the generators 
of the symmetry group of the problem under study. We 
can then obtain the Lie symmetry group by a procedure 
similar to that in (3. 7). 

But our problem does not finish with the analysis in 
classical mechanics. We must then express the genera­
tors of our group, and frequently the creation and anni­
hilation operators from which they are built, in the 
quantum picture as is done for example in (4.2). We 
expect this quantum mechanical formulation to reduce 
to the classical one in the limit Ii -> 0, but we may find, 
as was clearly seen in Sec. 4, that the generators of the 
Lie algebra may have different forms in the different 
subsets of states of the quantum problem. 

Once an explicit form of the generators is available in 
the quantum picture, we could pass to the determination 
of the unitary representation of the group of canonical 
transformation along the lines also discussed in Sec. 4. 

J. Math. Phys., Vol. 14, No.6, June 1973 

While the procedure outlined for finding the groups re­
sponsible for accidental degeneracy seems fairly general, 
we shall show in the next article that it does not apply to 
some other simple problems. We shall illustrate an al­
ternative development when we discuss in the following 
paper the problem of the isotropic oscillator in a sector of 
angle 11/ q where q is integer. 

We are indebted to Dr.P.A.Mello for many useful dis­
cussions. 
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Canonical transformations and accidental degeneracy. II. 
The isotropic oscillator in a sector 
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In this paper we discuss the accidental degeneracy in the problem of a particle in two dimensional 
oscillator potential constrained to move in a sector of angle 1T / q ,q integer. The degeneracy is due to 
both the Hamiltonian and the boundary conditions. The symmetry Lie group of canonical 
transformations is suggested by the explicit form of a complete nonorthonormal set of states 
expressed in terms of the creation operators. This group is complex and the corresponding 
representation in quantum mechanics is nonunitary. We discuss briefly the appearance of complex 
canonical transformations in physical problems. 

1. INTRODUCTION 

In the preceeding paper1 we analyzed the symmetry 
groups of canonical transformations responsible for 
the accidental degeneracy of the anisotropic oscillators 
whose ratio of frequencies was rational. From the dis­
cussion of these problems we arrived at some general 
conclusions for the determination of the groups. There 
are, however, other problems in which accidental degen­
eracy is present which seem to require a different type 
of approach. One of these problems is the motion of a 
particle in a two dimensional configuration space under 
the action of an harmonic oscillator potential, but res­
tricted to a sector of the plane of angle 'IT / q, where q is 
a positive integer. This sector is drawn in Fig. 1 for 
q = 3 and the heavy lines indicate the infinite potential 
barriers that limit it. We shall analyze this problem in 
the present paper both because of its intrinsic interest 
and the inSight it provides into the general problem of 
accidental degeneracy. 

The classical trajectory is very easy to draw. The par­
ticle under an oscillator potential moving unconstrained 
in the full plane will have an elliptical trajectory cen­
tered at the origin of the potential. We can draw this 
trajectory on a transparent plastic napkin. Then folding 
the napkin in such a way that it sustains an angle 'IT / q, 
we immediately see the orbit of the particle as modified 
by the barriers at the boundary of the sector. This 
orbit is periodic and nonergodic,2 i.e., it does not fill 
all the phase space surface of constant energy. It is 

o 
-¥--~------~~------

FIG.1. Classical trajectory of a particle (bold lines) subject to an 
harmonic oscillator potential and restricted to a sector rr /3 in the 
plane. 
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drawn in Fig. 1 for q = 3, where we also show the reflec­
tion of the orbit as if the barriers were mirrors. 

Does the corresponding quantum mechanical problem 
have accidental degeneracy? In polar coordinates r, ep 
the SchrMinger equation (in which n, the mass of the 
particle and the frequency of the oscillator are taken as 
1) has solutions, subject to the condition that the wave 
function vanishes at ep = 0, 'IT/q, of the form 3 

(rep 1111 112> = [2(111 !)[(1I1 + 112q + q) !r1 / 2 

x r<"2+l)q L ~2+1)q (r2) e -r72 'IT -1/2 sin[ q( 112 + l)ep J. (1. 1) 
1 

Notice that the state (1.1) is normalized with respect to 
the surface element rdrdep over the whole plane. We 
denote the state in the full Dirac notation, though later 
when referring to it we shall abbreviate to the ket 1111 112>; 
the L ~V2+1)q (r2) are associated Laguerre polynomials4 

with II~, 112 being arbitrary nonnegative integers. We 
write the solution in terms 112 + 1, rather than 112, so 
that the lowest energy state of this problem corres­
ponds to 111 = 112 = 0. The eigenvalue of the Hamilto­
nian3 for the state 1111 112> is 

(1. 2) 

We now proceed to discuss separately the cases in which 
q is odd and even. In the first case we divide the set of 
states (1.1) into 2q subsets characterized by Al>A2 de­
fined by 

Al = 0,1,2,··.,q-l, 

A2 = 0,1, 

which implies that we may write 

where n 1,n 2 are nonnegative integers. The energy 
E v v of (1. 2) satisfies the equation 

1 2 

(1. 3a) 

(1. 3b) 

(1. 3c) 

(E - q - 1)/(2q) = n 1 + n 2 + (A1/q) + (A2/2). (1.4) u
l

1l
2 

For q even we can write the energy (1. 2) as 

(1. 5) 

We then divide the set of states (1. 1) into q/2 subsets 
characterized by 

111 = Al mod(q/2), Al = 0,1,.··, (q/2) - 1, (1. 6a) 

112 = A2 mOdI, A2 = 0, (1. 6b) 

Copyright © 1973 by the American Institute of Physics 696 
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which implies that we may write 

(1. 6c) 

Thus, for q even we have 

For both q odd and even, states corresponding to differ­
ent (A1,A2) have different energies, but for a given (A1' 
A2) and a fixed value n 1 + n 2 = N we have states that 
are degenerate in the energy N + 1 times. 

In so far as the energy spectrum is concerned and the 
degeneracy of the states, the problem with q odd looks 
very similar to an anisotropic oscillator1 whose ratio 
of frequencies is (k2/k1) = (2/q), while for q even the 
ratio is (k2/k1) = (1/[q,!2]). As the spectrum of the iso­
tropic oscillator appears in 2q (q odd) or q /2 (q even) 
copies, we suspect that the group responsible for the 
accidental degeneracy in the present problem can be 
derived from SU(2) by some canonical transformation.1 
Unfortunately, we cannot obtain this SU(2) group by 
mapping the Hamiltonian of our problem on an isotropic 
oscillator, as the restriction on the states comes both 
from the Hamiltonian in the Schrodinger equation and 
the boundary conditions at ep = O,1T/q. We seem to re­
quire, then, a completely new approach and one is sug­
gested in the next section when we express the states 
of the oscillator in a sector in terms of creation and 
annihilation operators. 

2. CREATION AND ANNIHILATION OPERATORS AND 
THE STATES OF THE OSCILLATOR IN A SECTOR 

When dealing with the two dimensional isotropic quan­
tum oscillator it is convenient to introduce the spherical 
components of coordinate and momenta by the definition 

where Pi = - i a/axi • From them we can in turn con­
struct the creation operators 

7J± = (l/i2)(X± - iF.), (2.2) 

which in polar coordinates, where x± = re±i<p, take the 
form 

(2.3) 

We note the following symmetry properties of these 
operators: If we have a reflection across the X 2 = 0 
line in the plane, i.e., 

ep ~ - ep, then 71 ± ~ 1),. (2.4a) 

If we carry out a rotation by an angle rr / q, i.e., 

ep ~ ep + (rr/q), then 1)± ~ e±iTr/Q7J .. (2.4b) 

and thus, in particular, we have that when 

ep~ ep + (rr/q), then7J~~ -7J~ (2.4c) 

The Hamiltonian of the two dimensional oscillator can 
now be written as 

H = 7J+~+ + 7J-~- + 1, (2.5) 

where ~ ± is the annihilation operator 

J. Math. Phys., Vol. 14, No.6, June 1973 

~±=11!= 1~(XT+iP,f) 
v2 . 

1 . ( a l = "2 eT,CP r + - + -
ar r 

(2.6) 

In terms of 11 .. ~ ± the angular momentum takes the form 

1 a 
L = X 1P2 - X~l = -:- - = 1)+~+ - 1)-~-. (2.7) 

l a ep 

The state (1. 1) is an eigenstate of the Hamiltonian (2.5) 
with eigenvalue (1. 2) and of the square of the angular 
momentum L2 with eigenvalue (112 + 1)2q2. ThUS, it can 
also be written in terms of creation operators as 

(rep 1 111112)= 2-1 / 2 {[Ill +(112 + 1)q]!v1 !}-1/2 

x (71+71_)"1 [7J;V:z+l)q _1)5"2+l)Q] 1 0), (2.8) 

where the symmetry properties (2.4) of 11 ± guarantee 
that the wave function vanishes at ep = 0, rr/q. The ket 
10) is the ordinary ground state rr-1/ 2 exp(- i r2). 

We note immediately one basic difference between the 
states (2.8) and those of (1.2.7) for the anisotropic oscil­
lator. The latter can be written as 

In1k1 + AV n 2k2 + A2) = [(n 1k 1 + A1)!(n2k2 + A2)!P/2 

X (7Jfl)n1 (7J:2)n27Ji17J~2 10), (2.9) 

and thus almost immediately suggest the classical cano­
nical transformation (1.3.3) [or its quantum mechanical 
version (1.4.2)] as, for example, the creation operator 
711 when applied to (2.9) transforms it into a state in 
which n 1 ~ n 1 + 1,n2 ~ n 2• 

The states (2.8) are differences of monomial products 
of creation operators and not just a single product of 
powers of basic operators as (2.9). We can though ex­
press our states in the latter form if we are willing to 
settle for a complete, linearly independent, but not or­
thonormal set of states. For this purpose let us write 

(rep I.Vl I12) = (Ill! v2 !)-1I2(11+11_)"1(11f + 7J~)"2(7JJ-7J?)10), 
(2.10) 

where we use a round bracket for the ket 1 1I1112} to dis­
tinguish the state from the one defined by 1111112) in 
(2.8). As the polynomial in 71+,71- appearing in (2.10) is 
homogeneous the ket 1111112) is an eigenstate of the 
Hamiltonian (2.5) with eigenvalues given by (1. 2). It 
remains then to prove that it vanishes at ep = 0, rr / q. We 
note from (2.4a) that under a change ep ~ - ep, 1 111 112) ~ 
-I 11;1. 112 ) and thus (r, 0 IVl,II2) = O. Furthermore, from 
(2.4), for ep ~ ep + (rr /q), I 1I1V2) ~ (- 1)q("2 +1) 1 11 1112) 
so that 

(r,rr/q 1 111112) = (_1)Q(lJ2+1)(r,0 IV1v2) = o. (2.11) 

The energy spectrum (1. 2) was analyzed in the previous 
section and thus, again, we see that the states (2.10) are 
degenerate N + 1 times for a given (A1,A2)' if n 1 +n 2 =N 
and the relation between n 1,n 2 and Vv 112 is given by 
(1. 3c) when q is odd, or (1. 6c) when q is even. 

We note that the states (2.10) corresponding to different 
energies are, of course, orthogonal as H of (2.5) is 
Hermitian. On the other hand the states of the same 
energy in the N + 1 degenerate multiplet are not ortho­
normal as seen from their scalar product using the 
commutation relations [L, 71 ±] = 1, [L, 71 ±] = O. Thus, 
we still have to prove that they are linearly independent. 
We shall do this for q odd and a similar analysis holds 
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for q even. From (1. 3c), and as (A 1,A2) is fixed, we con­
clude that the part of the polynomial in (2.10) that 
changes with each state of multiplet of energy 2qN + 
(2A1 + qA2 + q + 1) is given by 

(2.12) 

As n 1 + n2 == N, we see from (2.12) that the highest 
power that T/+ can take appears in the term 

(2.13) 

Thus, for n 2 == N, n 1 == 0 the term T/~ qN is present in 
(2.12). For any n 2 < N, n 1 == N - n 2 , this term cannot 
appear and thus the state (2.10) in which (for q odd) 
III == A1, 112 == 2N + A2, is independent from all the 
others corresponding to a given (A 1, A2) and N. But, 
clearly, we can show in the same way that for n 2 ==N -1, 
n 1 == 1, the term T/f(2N-1)T/~ does not appear for any 
n 2 < N - 1, n 1 == N - n 2' and continuing in this fashion 
prove that all the states (2.10) are linearly independent. 

The states 1111112) of (2.10) now have a form very simi­
lar to those of (I. 2.7) in the sense that they are given 
by a single product of certain simple polynomial func­
tions of the creation operators. We shall take advantage 
of this fact to derive, first classically and then quantum 
mechanically, the Lie Algebra and Lie group responsible 
for the accidental degeneracy of the problem of the 
oscillator in a sector. 

3. CLASSICAL LIE ALGEBRA AND SYMMETRY GROUP 
FOR THE HARMONIC OSCILLATOR IN A SECTOR 

In this section we shall think of 1/,., ~,. not as operators 
but as classical functions of Xi ,Pi as defined through 
(2.1), (2. 2) and (2.6). From these functions we see that 
the Poisson bracket of any two variables F, G can now 
be expressed as 

{F,G} == d oF oG _ of OG) 
\01/+ a~+ o~+ oT/+ 

+ i (OF oG _ of ac) (3.1) 
01/- 0 ~- 0 ~- 01/- ' 

which implies {T/,., ~J == i, {T/", ~ J == O. 

Looking now at the states (2.10) and using as an analogy 
the analysis of the previous paper for the states (I. 2.7), 
it seems appropriate to define new creation variables as 

(3.2) 

Note that the creation variables defined by (3.2) are not 
to be confused with those given in the previous paper in 
terms of coordinates and momenta in the directions 
i == 1,2. The annihilation variables h, ~2 corresponding 
to them must be canonically conjugate, i.e., 

{1/i' ~j} == i6 ij , i,j == 1,2. (3.3) 

From the standpoint of commutators, this implies 

(3.4) 

and we can represent ~. as %l1j' We shall use 
this representation to derive in a simple fashion the ~j • 

From (3. 2) we have that 

11- == 111/11+, 1/+ == {t [T/2 + (1/~ - 41/1)1/2] V/q, (3.5) 

and, thus, 
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~ = 01/~ ~ + (~61 ' _~ 01/+) ~ • (3.6) 
o1/j o1/j 01/+ 1/+ J 1/+ o1/j 01/-

Interpreting now 0/01/,. as ~,. and making use of the fact 
that from (3.5) 

we obtain 

h == (T/r1~_ - 1/~-1~+) (T/% - 11~'-1, 

~2 == q-1(1/+ ~~ - 1/- ~_) (1/% - 1/~)-1. 

(3.7) 

(3.8a) 

(3.8b) 

We can now easily check that the l1i of (3.2) and ~i of 
(3.8) satisfy the Poisson bracket relation (3.3). 

We note that h, ~2 are not the complex conjugates of 
T/l> 1/2 (nor Hermitian conjugates in the quantum case) 
and, thus, if we make use of the customary relations 
between creation and annihilation variables and new co­
ordinates and momenta, we are not led to real canonical 
transformations. As we shall show in the next section, 
this seems to be related with the fact that the quantum 
mechanical representation of the symmetry group of 
canonical transformations is not unitary. We further­
more show in Sec. 5 that complex canonical transforma­
tions are involved in several important problems in 
physics. Thus, their appearance in the symmetry group 
of the oscillator in a sector is not an isolated event. 

From (3.2), (3.8) we can immediately check that 

(3.9) 

If q is odd we can divide both sides by 2q and the left 
hand side has the form (1.3.4) of the anisotropic oscilla­
tor with k1 == q, k2 == 2. If q is even we divide by q and 
again the left hand side has the form (I. 3.4), but with 
k1 == (q/2), k2 == 1. 

To arrive now at the generators of the classical Lie 
algebra and the symmetry group for the problem of the 
sector we need still to transform the Hamiltonian of the 
anisotropic oscillator appearing in (3.9) into that of the 
isotropic one. As shown in the preceeding paper, we can 
do this if we carry out the canonical transformation 

1/, == k?/2(T/i~i)(1-ki)/21/:i, ~'i == k?/2 ~:i(1/i~i)(1-ki)/2, 
(3.10) 

where k i , i == 1,2 takes the values indicated in the pre­
vious paragraph for q odd and even. Under this trans­
formation the Hamiltonian in (3.9) becomes proportional 
to 

(3.11) 

and thus the generators of the Lie algebra of its sym­
metry group1 are given by 

(3.12) 

We can immediately check that the Poisson brackets 
(3.1) of the variables T ,., T 3 and the Hamiltonian JC are 
zero, while among themselves they lead to the Lie alge­
bra of SU(2). 

To obtain the classical symmetry group associated with 
this Lie algebra of SU(2) we must proceed as in Sec. 3 
of the preceeding paper. We shall only outline the steps 
as their algebraic implementation is trivial. We relate 
the new creation and annihilation variables ij,., L with 
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71 ±, ~" in the following way: First we invert the expres­
sions (3.2), (3. 8) to determine ii ", L in terms of ij i' ~ i> 

i = 1,2. Then we invert (3.10) to obtain Ti i , ~j in terms 
Tii, ~i· The iii , ~i are related to 71i, ~i by the U(2) trans­
formation (1. 3. 7b). Finally, we can express 71i, ~i, 
i = 1,2 in terms of 71", L through (3.10) and then (3.2), 
(3.8). 

Having analyzed the classical Lie algebra and the sym­
metry group, we turn now our attention to the quantum 
picture. 

4. THE GENERATORS AND THE REPRESENTATION 
OF THE SYMMETRY GROUP IN THE 
QUANTUM PICTURE 

In the quantum picture the creation and annihilation 
variables return to their roles as operators, but then 
we must also express 71i' ~i' i = 1,2 of (3.2), (3.8) as 
operators that act on the state (2.10) without ambiguities. 
We have no problem for the effect of 711> 712 of (3.2) On 
the state 11'11'2) of (2.10) as they are polynomial func­
tions of 71+> 71- only and these commute. For h, ~2 we 
have both 71+,71- and ~+> ~_ in (3.8) which do not commute 
and, furthermore, h, ~2 contain the factor 711 - 11~ to a 
negative power. Yet we shall assume that ~1> ~2 as 
operators are given by (3.8) in the order in which 71+> 71-, 
~+ , ~_ appear. 

Due to the presence of the factor (71J - 71~t1 in (3.8), 
the determination of the matrix elements of ~1> ~2 with 
respect to a complete set of orthonormal states in the 
sector, such as 11'11'2> of (2.8), seems impossible. We 
note though that the states I. 1'11'2> can be expanded in 
terms of the complete but not orthonormal set 1 1'11'2) 
of (2.10) with the help of transformation brackets that 
will be discussed below. Thus, we need only to see 
whether the application of ~l> ~2 to the states 11'11'2) 
can be carried out. As all the states 1 1'11'2) have a 
factor (71J - 71~), the (71J - 71i)-1 in ~1' ~2 just cancels it. 
Furthermore, as the commutators [~", 71 ,,] = 1, [~., 71 ,,] = 0, 
when applying the operators ~" to polynomials in the 
creation operators 71", we can replace the former by 
a/a71±" Using these considerations, we obtain from (3.2), 
(3.8) and the explicit form (2.10) for the state 11'11'2) 
that 

711 1 1'11'2) = (1'1 + 1)1/2 1 1'1 + 1,1'2)' 

712 1 1'11'2) = (1'2 + 1)1/2 1 1'1,1'2 + 1), 

h 1 1'11'2) = I'fl2 1 1'1 - 1,1'2)' 

~2 1 1'11'2) = 1'~/2 11'1> 1'2 - 1). 

(4.1a) 

(4.1b) 

(4. 1c) 

(4.1d) 

The behavior of the 71 i , ~; with respect to the states 
1 1'11'2) is then entirely similar to that of the creation 
and annihilation operators in the two directions i = 1,2 
of the anisotropic oscillator with respect to the corres­
ponding state (I. 2. 6). Just as in the case of the aniso­
tropic oscillator, we can now divide the set of states 
1 1'11'2) of (2.10) into subsets characterized by (A1,A2)' 
As indicated in the introduction, there will be 2q sub­
sets for q odd and (q/2) for q even. For each one of 
these subsets of states we can pass, again as in the aniso­
tropic oscillator, from the operators 71;, ~i to 71i, ~i by 
the transformation (I. 4. 2), where k1 = q, k2 = 2 for q 
odd, k1 = q/2, k2 = 1 for q even. The quantum mechani­
cal generators of the symmetry group of the oscillator 
in a sector continue to be given by (3.12), but now the 
71i , ~i, i = 1,2 in it, are obtained for each subset (A1' A2 ) 

of states (2.10) in terms of 1/ ±, ~" through (1. 4. 2) and 
(3.2), (3.8). 
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To see what is the effect of a finite group transformation 
of the formR(o,{3,y) of (1.4.2) On the states 11'11'2) of 
(2.10), we first rewrite them as 

(4.2) 

where j = i (n 1 + n 2), m = i (n1 - n2) and n l>n 2, A1> Af 
are related to 1'1,1'2 by (1. 3c) when q is odd and (1. 6c) 
for q even. It is immediately clear then that, as in (1.4.7), 

R(o,{3,y) 1 jmh. A. =:6 1 jm't A. :D!n'm(o{3y). (4.3) 
12m' 1 2 

From this result we wish now to obtain the representa­
tion of the SU(2) transformation with respect to the set 
of orthonormal states 11'11'2> of (2.8). We require first 
the development of the states 1 jm} A. A. of (4.2) and 

I 2 
(2.10) in terms of 11'11'2>' USing the notation (4.2), we 
can write 

The summation extends over the finite set of states cor­
responding to the same energy which implies that 1'1> 1'2 
correspond to the same values of A1,A2 appearing in the 
round ket 1 1'11'2) of (2.10). The transformation brackets 
in (4.4) can be easily obtained from the expansion of the 
polynomial in (2.10), and the matrix 

(4.5) 

where we suppressed A1>A2 for a clearer notation, is in­
vertible as the set of states (2.10) is linearly indepen­
dent. Denoting by < 1'11'2 1 jm}-1 the elements of the in­
verse matrix, we have now that 

< 1'11"2 1 R(o, (3,y) 11'11'2> 

= < 1'11'21 R(a,{3,y) :6 1 jm}A. A. < 1'11'2 Ijm}-1 
m 1 2 

= :6 < 1'11'2 1 jm'} :D~'m(a{3y) < 1'11'2 1 jm}-1. (4.6) 
m~m 

We note that, again as in the case of the anisotropic os­
cillator, the matrix elements are different from zero 
only when 11'11'2>,11'11'2> belong to the same subset of 
states characterized by a given (A1' A 2)' Furthermore, 
the corresponding n)"n 2 and n1,n2 related to 1'1> 1'2 and 
11'1,1'2 by (1. 3c) or t1. 6c), must satisfy n 1 +n2 =n1 +n2 
due to the invariance of the Hamiltonian under the trans­
formation. 

It is important to notice that the representation of the 
SU(2) group in the quantum mechanical picture is no 
longer unitary due to the transformation brackets in 
(4.6). This seems related to the complex character of 
the canonical transformation as indicated in the pre­
vious section. 

5. CONCLUSIONS 

We can draw the following conclusions from our proce­
dure of deriving the Lie algebra and symmetry group 
of a plane oscillator in a sector of angle rr/q. We note 
first that in this problem we required the expression of 
the wave function in terms of creation operators acting 
on the lowest energy state. The states that proved use­
ful for our purpose were the nonorthonormal ones 
(2.10) given as powers of certain simple polynomials in 
the creation operators. The form of these states then 
suggested the group of complex canonical transforma­
tions responsible for accidental degeneracy. 
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H we can decompose the states of other problems where 
accidental degeneracy is present in terms of powers of 
some basic operators acting on a ground state, we may 
hope that a similar procedure could give us an insight 
into their symmetry group. A problem with this struc­
ture is the one proposed by Calogero,5 where particles 
in one dimension interact through a quadratic and in­
verse quadratic potentials in their relative distances. 
In the case when we have only three particles, and after 
eliminating the center of mass, we get a problem in the 
plane. Perelomov6 has shown how the states of this 
problem can be written as products of powers of two 
operators acting on the ground state. The situation re­
sembles very much that in the expression (2.10), but 
now the two operators are not only functions of 7)+ ,7)­

but of the coordinates r, cp as well. Thus, if we identify 
these two operators with 7) l' 7)2 as in (3.2), it is consi­
derably more difficult to find the corresponding h, ~2' 
The problem is being studied at present and we hope to 
present it in a third article in this series. 

The procedure followed in the present paper leads to a 
symmetry group which is a group of complex canonical 
transformations. Now normally in mechanics we are 
concerned with real canonical transformations and so 
the question arises whether the complex variety appears 
elsewhere than in the present problem. We wish to indi­
cate that the simple group of complex linear canonical 
transformations 

ad - be = 1, a,b,e,d real 

(5.1) 

has a number of interesting applications. 

We note first that the matrices appearing in (5.1) form 
a group as a product of two of the type leads to another 
of the same form. It is also a group of canonical trans­
formations as {x,p} = 1. The representation, which is 
nonunitary, can be derived from the results obtained in 
the paper of Moshinsky and Quesne7 for real linear 
canonical transformations when we replace b by ih and 
so, when b ~ 0, it takes the form 

< xii u I x") = (21T I b 1)-1 exp[- (2b)-1(ax'2 - 2X'X" + dX"2)]. 

(5.2) 

When a = d = 0, b = - e = 1 we get of the kernel of the 
Laplace transform, while in the corresponding real case, 
i.e., x = p,p = - x, the representation, which is unitary, 
gives the kernel of the Fourier transform. 7 
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When we have 

a = d = b = - e = 1/12, (5.3) 

X is just the annihilation operator and the representation 
(5.2) corresponds to the states7 for which x is diagonal, 
i.e., the coherent states of optics.s 

When a = d = 1, b ~ 0 and e = 0, the representation is 
a Gaussian and so the transformation 7 

I x") = J I x') dx' < x' I u I XII) (5.4) 

provides a Gaussian transform of the type used in clus­
tering theory by Brink.9 Its inverse can then be deter­
mined purely from the fact that it corresponds to a rep­
resentation of the transformation (5.1). 

The expression (5.2) also appears in a very important 
fashion as a kernel in clustering theory as was shown 
by Kramer.10 The realization that it is a representa­
tion (5. 1) is very important for the factorization and 
products of such kernels. 

Thus, the complex linear canonical transformation (5. 1) 
and its nonunitary representation plays an important 
role in several branches of physics. It is~ therefore, not 
surprising that other complex canonical transformations 
and their nonunitary representations appear in relation 
with problems such as the symmetry group of the plane 
oscillator in a sector of angle 1T / q. 
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The evaluation of lattice sums. II. Number-theoretic 
approach 
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Number theory is used to sum several series of the form 'J:.ai;k· .. (ai2 + bP + ... )-S in two and 
three dimensions. 

I. INTRODUCTION 

In the first paper of this series l analytic procedures 
were presented by whose meanS lattice sums of the 
Madelung form for crystal surfaces could be evaluated. 
The purpose of this paper is to supplement that discus­
sion by showing how the results obtained there and even 
a much wider class of sums can be found rather simply 
by the use of elementary number theory. This is some­
what interesting in itself, for the theory of numbers is 
generally considered as being remote from the concerns 
of applied mathematics. 

As was the case in Paper I, we simply reexpress one 
infinite series as a combination of others, so what is 
meant by "evaluating" a lattice sum should be made 
explicit. Here we say that a lattice sum has been 
evaluated exactly when it has been reexpressed in 
terms of familiar constants and Dirichlet L-series 

00 

L(s, X) =:6 X (n)n- s • 
n~l 

(1) 

The quantities X(n), known as Dirichlet characters, have 
the properties 

I X (n) I = 0,1, 

X (mn) = X (m)X (n). 

Prototypical of these series are the two functions 

~(s) = L(s, 1) and (3(s) = L(s,c l ), 

where 

1
0 n even 

c (n) = 
1 (_I)(n-l)/2 n odd, 

(2) 

(3) 

of which extensive use was made in I. Every L-series 
satisfies a functional equation similar to that for the 
Riemann zeta function and is easily calculated for all 
real s as illustrated for (3(s) in I. (Except for the zeta 
function, the L- series are entire functions of the com­
plex variable s). 

Lattice sums of the Madelung type can be taken to have 
the form 

(4) 

where Q is an integral quadratic form, and are called 
Epstein zeta functions, although little is known about the 
latter in general. In this paper, as in I, we are con­
cerned with the binary case 

Q(m,n) = am 2 + bmn + cn 2 (5) 

and primarily with the case b = O. These series were 
apparently first considered by Dirichlet2 about a cen­
tury and a half ago, but there has been little interest in 
them per se among number theorists and only the case 
(1-2) appears to be well known. 
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In Sec.n we review some facts about number theory 
and quadratic forms; several examples are presented 
in Sec.m. 

II. SOME ElEMENTARY NUMBER THEORY 

All the facts we require are essentially contained in 
the first ninety pages of Dickson'S Introduction to the 
Theory of Numbers 3 and we adopt his notation. 

The discriminant of the form (5) is the quantity 

d = b2 - 4ac. (5) 

When d < 0, Q has the same Sign for all values (m,n) ,,0 

(0,0) and is called definite. We shall assume that this 
sign is positive. If one makes a unimodular substitution 

m = O!X+ {3y, n =yx + Oy (7) 

where O!, {3, y, D are integers and aD - (3y = 1, the new 
form Q' (x,y) is called equivalent to Q; the discriminant 
is preserved and it can be shown that for each d there 
is only a finite number of equivalence classes. This 
number is called the class number C(d). If Q(x,y) = n, 
the form Q is said to represent n and the number FQ (n) 
of such representations is finite when d < O. Thus, when 
Q (m, n) is positive definite, for any function F, 

00 

s = :6 F[Q(m,n)] = 6 FQ(n)F(n), 
(m,n)"'(O,O) n~l 

where the first sum is over all pairs of integers, both 
positive and negative. Furthermore, since when Q is 
equivalent to Q', we clearly have FQ (n) = Frt (n), so 

(8) 

:6 f[Q(m,n)] = 6 f[QI(m,n)]. (9) 
(m,n)"(O,O) (m,n)"(O,O) 

For example, if we make the substitution m = p + 2q, 
n = q and take s = 2 in (I. 2), we find the double sum 

p4 + 26p2q2 + 25q4 ::;: 1T2 (e _ 1503) 
(p4 _ 4p2q 2 + 25q4)2 3 \ 

(10) 

where e is Catalan's constant. 

If two integers a, b leave the same remainder when 
divided by n, they are called congruent modulo n: a == b 
(mod n). If m is congruent to a square, modulo n, then 
m is called a quadratic residue of n. When n is a prime, 
one defines the Legendre symbol 

{

On divides m 
(m In) = + 1 m is a quadratic residue (mod n). 

- 1 otherwise 

Legendre's symbol is multiplicative (032), 

(mn I p) = (m I p)(n I p) 

Copyright © 1973 by the American Institute of Physics 

(11) 

(12) 
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Let n == p~l ... p?, then the Kronecker symbol is defined 
as 

(m I n) == (m I P1)el ••• (m I Pz )e l (13) 

(D77), where those on the right are Legendre symbols. 

The class number of a positive definite form of discri­
minant d == - P is given by 

C(d) == (liP) (A - B), 

where A is the sum of quadratic residues (mod p) and 
B is the sum of the nonquadratic residues. The calcu­
lation of this quantity for general d occupies a large 
portion of number theory. An extensive list of repre­
sentations for classes of forms belonging to discrimi­
nants 0 > d> - 400 is given on D85. 

The number w of nontrivial unimodular substitutions 
which leave a form invariant, and which depends only 
on the discriminant, is called the automorphism number 
and has the value 

w = 4 for the equivalence class {a(x2 + y 2)}, 

w == 6 for the equivalence class {a(x2 + ~ + y2)}, (14) 

W = 2 for all other forms. 

Dirichlet has shown that the number of times an integer 
k is represented by a complete set of representatives 
for the forms of discriminant d is 

R(k) == wed) L) (d 1m) (15) 
mlk 

when k has no divisors in common with d and the sum is 
over all divisors of k. When k has common factors with 
d,R(k) must be found by stealth as will be illustrated in 
Sec. III. There are two cases to consider. If the sets of 
integers represented by the various equivalence classes 
of forms for a given discriminant are disjoint, which is 
described by saying that there is a single class in each 
genus, there exists a character which takes a distinct 
value on each such set of integers. Thus a projection 
function can be formed which will vanish for all integers 
except those represented by a given equivalence class 
and which when multiplied by (15) will give the represen­
tation number for any desired form. (When the class 
number is unity, this is trivial.) When there is more than 
one class in each genus, no such characters can be found 
and the representation problem has not yet been solved. 
We shall therefore consider only the former case. 

III. EXAMPLES 

As a first example, we shall rederive the formulas in 
the table of Paper I by purely number theoretic means. 
Consider the forms Q1 == m 2 + n 2 and Q2 == m 2 + 4n 2• 
Since C(- 4) == C(- 16) = 1, each of these forms can be 
dealt with separately. 

When k is odd, it can have no factor in common with 
either discriminant, so from (15) 

R1(k):::: 4 L) (- 4Im), 
mlk 

R 2 (k) = 2 L) (- 16 1m). 
mlk 

Since m must be odd, in which case (2 1m) = ± 1, 
(- 1 1m) = (- 1)(m-1)/2, we have 
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(16) 

(- 41 m) == (11 m)(2 I m)2 == (- 1)(m-1)/2, 

(- 16 1m) == (- 11 m)(2 I m)4 == (- 1)(m-l)/2, 
(17) 

so 

For Ql> if k is even, say k == 2q, then 2q = x2 + Y 2 im­
plies that x + y == 2a, x - y == 2b, say, so q = a2 + b 2, 
R1 (.'l) == R1 (q), and thus we can eliminate all factors of 
2 from k. Hence for all k 

R 1 (k)=4 L) (_1)(m-U/2. 
mlk 
odd 

In the case of Q2' if k == 2q where q is odd, then 2q == 

(18) 

x 2 + 4y 2 implies that x == 2a so q == 2(a2 + y 2) which is 
impossible, so R2 (2q) = O. Proceeding similarly, we 
see that 

k odd 

k == 2q, q odd. (19) 

k == 4q, q even or odd. 

We now have for any function F 
00 

L) F[Q1 (m,n)] == 4 L) L) (- 1) (m-1)/2 F(n) 
(m,n)"(O,O) n~1 min 

modd 
00 

:::: 4 L) L) L) (- 1) (m-1)/2 F(mk) 
n~1 m odd k 

mk~n 

00 

== 4 L) L) (- 1)(m-1)/2F(mk). 
modd k~1 

(20) 

In the Madelung case where F(n) :::: n- s , the sums factor 
and we find 

L) (m 2 + n 2)-s == 4 ~ (s) /3(s) (21) 
(m,n)"(O, O) 

or 

L) (m 2 + n 2t s == ~(s) /3(s) - ~(2s). (22) 
m, n:;:; 1 

Similarly, we find 

L) F[Q2(m,n)] == 
(m,n) "(0, 0) 

00 

2 L) L) (- 1)(m-1)/2 [F(mk) + 2 L) F(2 I mk)]. 
modd k odd Z~1 

(23) 
Hence, again in the Madelung case, 

L) (m 2 + 4n2t s :::: 2(1- 2-s + 21-2s)~(s)/3(s) 
(m,n)"(O,O) (24) 

x ~(s) (3(s) - t (1 + 2-2s ) ~(2s). (25) 

The remaining sums are obtained from the elementary 
relations 

S2 = (1 + 22- 2 s) S1 - 4S5 , 

S3 == S1 - 2S5 , 

S4 == (1 + 2-2S )S1 - 4S5 • 

As an example of the case when the class number is 

(26) 
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greater than unity we consider the series 
00 

s = 6 (m 2 + 16n2t s = 6 r 1(n)n- s • (27) 
n o 1 

This is related in a simple way to the series on the 
right-hand side of (1. 26) which we were unable to eval­
uate by the use of theta functions. The class number 
for discriminant d = - 64 is 2 and as representative 
forms we take 

(28) 

By eXam~ing the character table for the Abelian group 
of order - d = 8, we find that 

c2 (n)=j ~ 
-1 

n even 
n == ± 1 mod 8 
n == ± 3 mod 8 

(29) 

has the property that when k = Q1 (m,n) is odd, c2(k) = 1 
whereas when k = Q2(m,n) is odd, c 2(k) = - 1. Hence 
from (15), we see that when k is odd 

r 1 (k) = [c 2 (k) + 1] 6 (- 1)(m-1)/2. 
mlk 

Next consider what happens when k is even: 

(30a) 

Case I: k = 2q,q odd. 2q = x2 + 16y2 implies that 
q = 2(a2 + 4y 2) which is impossible so 

(30b) 

Case II: k = 4q,q odd. 4q = x2 + 16y2 implies that 
q = a2 + 4y2 for which the answer is given in (19). 
Hence 

r 1(4q) = 2 '0 (- 1)(m-1)/2. (30c) 
mlq 

Case Ill: k = 8q, q odd. This leads to q = 2(a2 + y 2) 
so 

Case IV: k = 2lq, q odd, I? 4. Factoring out 2's 
leads to the two squares problem and we find 

r 1 (2 l q) = 4 6 (- 1)(m-1)/2. 
mlq 

From (27) and (30) we have 

S = y~(s),8(s) + L(s,c2 )L(s,c1c 2), 

where 

y = 22- 4s + (1 + 21- 2s )(1 _ 2- s ), 

and the two new L-series we require are 

1 1 1 1 
L(s, c 2 ) := 1 - - - - + - + - - ... , 

3s 5s 7 S 9 S 

1 1 1 1 
L(s,c1c 2) = 1 +----- +- + .... 

3 s 5 s 7 s 9 s 
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(30d) 

(30e) 

(31) 

(32) 

We note that their product can be written A2(S) - B2(S), 
where 

00 
(- l)k 

A(s) = :0 
(4k + l)s 

, 
k=O 

(33) 
00 

B(s) := :0 
(_ l)k+1 

k= 1 (4k - l)s 

are special cases of the Lerch zeta function. From (31) 
we find that 

00 

S6 = :0 (m 2 + 16n 2t s := is - ~ (1 + 2-4s g(2s), 
m,n=l 

m=l 
kodd 

00 

S8 = 6 
k,lodd 

1 

We have therefore managed to evaluate the triple sum 
in Eq. (1.26) which can be expressed 

00 

4 :0 (- l)m[(l- ~)2 + m 2 + n 2 ]-s 
l,m,n=l 

:= 2 s (2 s + 21 - s - 1)~(s),8(s) 

+ (2 2s - 3) ~(2s) - 22S[A2(s) - B2(s) + ,8(2s - 1)], 

(Re s > 1), (34) 

which is the Madelung sum for an orthorhombic lattice 
in which planes of charges alternate in sign. This 
appears to be the first time such a result has been ob­
tained and holds out the prospect that the Madelung sum 
for real three dimensional ionic crystal can be expressed 
in this way. 

ACKNOWLEDG MENT 

The author expresses his thanks to Professor George 
Mackey for indicating this approach to these sums. 

1M. L. Glasser, 1. Math. Phys. 14,409 (1973). References to formulas 
in this paper are preceded by the letter I. 

2p. G. Lejeune-Dirichlet, Vorlesungen uber Zehlentheorie, edited and 
supplemented by R. Dedekind (Braunschweig, 1894), 4th ed., Chap. 5. 

3L. E. Dickson, Introduction to the Theory of Numbers (Dover, New 
York, 1957). Specific references to this book will be made by page 
number preceded by D. 



                                                                                                                                    

Propagation of frequency-modulated pulses 
randomly stratified plasma* 

. 
In a 

loannis M. Besierist 

Courant Institute and Department of Mathematics, University Heights, New York University, 251 Mercer Street, 
New York, New York 10012 

Frederick D. Tappert 

Bell Laboratories, Whippany, New Jersey 07981 
(Received 8 August 1972) 

Quantitative predictions are made of the effects of randomness and dispersion on the spreading, 
attenuation, and modulation coefficient of a frequency-modulated wave packet propagating in a 
randomly stratified isotropic plasma. In the absence of random fluctuations, the recently reported 
findings of Millman and Bell are recovered. 

1. INTRODUCTION 

Scalar wave propagation in a cold, isotropic, randomly 
stratified plasma is described by the one-dimensional 
Klein-Gordon equation 

02 (0 ) E2 - u(z,t;a) + n~p Z,- iE -;a u(z,t;a) = 0, 
o t2 OZ (1. 1a) 

"2 ( . o. ) _ 2( . a)2 2(.) •• oP\z,- lE oz' a - c - lE OZ + wp z, a . (1. 1b) 

Here, n~p is a positive, self-adjoint, stochastic operator 
depending on a parameter a E G., G. being a probability 
measure space.1 In addition, u(z, t; a), the real scalar 
random field amplitude, is an element of an infinitely 
dimensional vector space :re, and c is the speed of light 
in vacuo. The quantity w~ (z; a), the square of the plasma 
frequency, is defined by 

wj(z; a) = (41Te2/m)N(z; a), (1. 2) 

where e and m are respectively the charge and mass of 
an electron, andN(z; a) is the electron density which is 
assumed to be a real nonnegative space-dependent ran­
dom function. The problem (1. 1) is rendered closed by 
specifying Cauchy initial data for u and its time deriva­
tive. 

A distinguishing feature of this problem is the presence 
of the positive dimensionless parameter E which can be 
taken to be inversely proportional to the scale size of 
the spatial inhomogeneities. As such, for a slowly vary­
ing medium, E will be a small but finite quantity.2 

It is our purpose in this paper to examine the propaga­
tion of a frequency-modulated (chirped) pulse in a ran­
domly stratified plasma described by the Klein-Gordon 
equation (1. 1). Towards this goal we shall make use of 
a recently developed general theory of wave propagation 
in random media, the stochastic wave kinetic tech­
nique. 3.4.5 

The random coefficients will be taken to vary slowly, 
and the correlation length of the random inhomogeneities 
is assumed to be large compared to a wavelength. (These 
notions are made mathematically precise in Ref. 4). 

Strictly speaking, (1. 1) describes a two-mode problem 
(incident and reflected waves). However, within the 
framework of the short wavelength approximation con­
sidered here, the reflected waves are exponentially 
small. 6 The theoretical results given below, therefore, 
pertain to a single, forward propagating wave packet. 
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We shall be concerned with the effects of randomness 
and dispersion on the spreading, attenuation, and modu­
lation coefficient of a frequency-modulated pulse. Al­
though dispersive effects are reversible-the receiver 
is usually equipped with "built-in dispersion" in order 
to make optimal use of the additional signal bandwidth-­
their stochastic counterparts lead to an irreversible 
degradation of the signal. The problem of making quan­
titative predictions of the latter effects therefore has 
important practical consequences. Analogous calcu­
lations have been completed in connection with the 
propagation of an unmodulated wave packet traversing 
a random, disSipative, and dispersive transmission line 
mOdelled by a generalized telegraphist's equation. 7 

In order for the discussion to be self-contained, a brief 
outline of the stochastic wave kinetic method as it per­
tains to the problem under examination is given in the 
following two sections. The main results of this paper 
together with a discussion of their significance as well 
as an enumeration of the conditions which must be 
satisfied for the theory to be applicable are given in 
Sec.4. In Sec. 5, we recover the recent results of Mill­
man and BellS in connection with the effect of iono­
spheric dispersion on a frequency-modulated pulse by 
conSidering the dual boundary-value problem in the 
absence of random inhomogeneities. 

2. THE ANALYTIC SIGNAL AND THE WIGNER 
DISTRIBUTION FUNCTION 

In the following we shall be concerned with the time 
evolution of a "measurable" quantity. In this sense, the 
field u(z, t; a) and its intensity u2 (z, t; a) have little 
physical meaning. We may, however, consider the total 
wave energy and the total wave action which are given 
in terms of the field u(z, t; a) and the operator no p 
by the integrals 

(2.1) 

(2.2) 

respectively. In view of the assumption that the medium 
is time-independent, both of these quantities are con­
served. The integrands of (2.1) and (2.2) are respec­
tively the space wave energy and wave action density 
functions. 

In order to circumvent the difficulty of working with 
the complicated expressions (2.1) and (2.2) directly, 
we shall introduce the notion of the complex analytic 
signal. This quantity is defined by means of the relation 

'/'(z t· a) = 2-1/ 2 (n1/2 u + iEfrl/2 u ) 
'Y " op op t· (2.3) 
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The total wave energy and wave action associated with 
(1. 1) are given in terms of 1/1 and nop as follows: 

E = j I/I*nopl/ldz, (2.4) 

A= jl/l*l/Idz. (2.5) 

The integrands I/I*nop 1/1 and 1/1* tf; are respectively the 
space wave energy and wave action densities. 

The Wigner distribution function is defined next in 
terms of the analytic signal: 

f(z,k,t;O') = (2lTE)-1 j dyeiky/<tf;*(z + h,tjO') 

x I/I(z - h, tj 0'). (2.6) 

The total wave energy and wave action can be written in 
terms of the Wigner distribution function as follows: 

E = j dz j dk nez, kj O')f(z, k, t; 0'), 

A= J dz jdkf(z,k,tjO'). 

(2.7) 

(2.8) 

Here, n(z, kj 0') is the Weyl transform of the operator 
nap' By virtue of (2.7), nez, k; O')f(Z, k, t; 0') can be in­
terpreted as the wave energy denSity in the phase space 
(z, k) at time t. Its integral over k-space is the space 
wave energy density. Similarly, from (2. 8),j(z, k, tj 0') 
can be thought of as the wave action denSity in phase 
space and its integral over k- space as the space wave 
action density. 

3. THE STOCHASTIC WAVE KINETIC EQUATION 

In the wave kinetic approximation (E small but finite), 
the Wigner distribution function obeys the Liouville 
equation 

o 0 0 at f(z, k, tj 0') + ok nez, kj 0') oz f(z, k, tj 0') 

o 0 
- oz n(z, k; 0') ak f(z, k, t; 0') = 0, (3.1) 

to 0(E2). Of course, n(z, kj 0') must be computed to the 
same order of accuracy. For the Klein-Gordon equation 
(1.1), one has 

nez, kj 0') = [c2k 2 + wJ(z; 0'»)1/2 + 0(E2). (3.2) 

Since n(z, kj 0') is a random function of pOSition, (3.1) is 
referred to as a stochastic wave kinetic equation. 

The electron density is next separated into mean and 
fluctuating parts, viz., 

N(z; 0') = No + ON(zj 0'), (oN(zj 0'» = 0. (3.3) 

The angular brackets in (3.3) denote a statistical ave­
rage over an ensemble. The deterministic background 
electron density,N 0' is assumed to be homogeneous. The 
fluctuating part of the electron denSity is specified to be 
a random function of pOSition with zero mean. 

For spatially homogeneous fluctuations, we define the 
two-point correlation function by the expression 

r(~) =N02(oN(zj 0') oN(z - ~jO'». (3.4) 

The variance, 1]2, of the fluctuations is introduced as 

(3.5) 

and the correlation coefficient, y(~), is given by the ratio 

(3.6) 
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In terms of the correlation coefficient, a correlation 
length, I, is defined by means of the integral 

(3.7) 

On the basis of the above assumptions and within the 
framework of the long time, Markovian, first-order 
smoothing and diffusion approximations (cLRefs.4, 5), 
the average Wigner distribution function obeys the 
equation 

r ~ + v (1 -~ 1]2 wto) ~ (f(z k t· 0'» 
Lin g 8 n6 o~ '" 

1]2 wJo 02 
= Ilvg 1- (f(z,k,tjO'». (3.8) 

4 n6 oz2 

Here, w~o = 4lT N 0 e2 /m is the square of the background 
plasma frequency in terms of which the background 
angular frequency can be written as no(k) = [c2k2 + wgo]1/2. 
The group velocity, v g (k), is defined as the first de­
rivative of no(k) with respect to k. We shall later make 
use of the index of dispersion, f3(k), which is defined as 
the second derivative of no(k). 

In (3.8), the left-hand side describes convection with 
modified group velocity, while the term on the right­
hand side describes spatial diffusion due to the random 
fluctuations. 

4. SPACE-TIME EVOLUTION OF A FREQUENCY­
MODULATED PULSE 

We consider a frequency-modulated Gaussian wave 
packet described initially (t = 0) by the analytic Signal 

l/I(z,O) = 1/10 exp[-(z - zo)2/2ual 

x exp{ (iko/E)[(z - zo) + (Emo/2)(z - zO)2 + CPo]). 
(4.1) 

The constant E should be regarded as a formal expansion 
parameter (ensuring that the wave packet is much larger 
than the carrier wavelength) whose numerical value is 
unity. The carrier wave number is kO/E, and uO' the 
standard deviation, can be considered as a measure of 
the pulse width. The normalization amplitude is denoted 
by tf;o, and CPo represents an arbitrary phase constant. 
The parameter m o' which has the dimensions of recipro­
cal length, measures the frequency modulation of the 
pulse. We mention that solutions can be obtained for 
other types of pulses, but the Gaussian wave packet 
chosen here allows one to obtain simple, easily inter­
pretable results. The temporal derivative of u at t = ° 
is chosen such that the wave packet propagates toward 
the positive z-direction. 

With the normalization amplitude equai to (lTUa)-1I4, one 
has, corresponding to the analytic signal (4.1), the nor­
malized (with respect to k- and z-space) initial Wigner 
distribution function 

f(z, k, 0) = (1/lTE) exp[- (z - zo)2/ua] 

x exp{ - (ua/E2) [k - ko - koEmo(z - zo)J2}. (4.2) 

The associated space wave action density (intensity or 
envelope function) can be found by multiplying (4.1) by 
its complex conjugate. Alternatively, it can be obtained 
by integrating f(z, k, 0) over k-space, viz., 

p(z,O) == I I/I(z, 0) 12 = jf(z,k,O)dk 

= (lTUa)-1/2 exp[- (z - zo)2/ua l. (4.3) 



                                                                                                                                    

706 I. M. Besieris and F. D. Tappert: Propagation of frequency-modulated pulses 706 

Furthermore, the initial mean wave number is obtained 
as follows: 

K(z,O) == (l/p) J kf(z,k,O)dk == ko(l + mo(z - zo)]. (4.4) 

Since k occurs in Eq. (3. 8) only as a parameter, one may 
easily solve this equation exactly using the initial value 
given by Eq. (4.2). Since the desired information is con­
tained in the moments with respect to k of the solution, 
we shall make use of the smallness of E ("narrow band­
width" approximation) to simplify the solution before 
computing the moments. Thus the k-dependent coeffi­
cients of 0(1]2) are replaced by constants evaluated at 
the carrier wave number ko and the background group 
velocity is approximated by vg(k) == VgO + f3 o{k - ko), 
where VgO = vg(ko) = nb(ko) and f30 = (3(ko) = n3(ko).9 
For the problem under consideration, we obtain 
VgO = c2ko/no and f3 0 = c2w~o/n5' We shall also use 
the abbreviations Do = vgowffo 1]2l/4n6 and I' == a~komo. 
It may then be readily shown that the solution for the 
mean Wigner distribution function may be written in the 
form 

(f(z, k, t; a» = (l/1TE)(ao/al ) exp[- (z - Zo)2/a2) 

x exp{- (0"20"5/O"t) [k - ko - koEm(z - ZO)]2/E2} , 

(4.5) 
with the definitions 

O"t ::::: 0"5 + 4Dot(l + I' 2), 

a2 = O"ofy + (1 + y2)(f3ot/a~)J. 
0"2 = (O"f + 0"~)/(1 + 1'2), 

kom = 0"2/0"00"2, 

Zo == Zo + vgo [1- % 'lj2(w~o/nA}] t. 

(4.6a) 

(4.6b) 

(4.6c) 

(4.6d) 

(4.6e) 

It should be noted that 0"1 -7 0"0,0" -70"0' and m -7 mo as 
t -7 0, so that the initially prescribed Wigner distribution 
function may be recovered. 

The mean intensity is given by the zeroth moment, 

(p (z, t; a» == ( ilf'{z, t; a) \2) = J dk (f(z, k, t; a» 

== (1Ta2)-1/2 exp[-(z - ZO)2/0"2]. (4.7) 

It is seen that within the range of validity of the approxi­
mations used in this paper, the original Gaussian pulse 
shape remains Gaussian for t > 0 and the variance in­
creases from 0'5 to 0"2 [cf. Eq. (4. 6c) ] due to both disper­
sive and stochastic spreading. Furthermore, the ex­
pression for Zo [cf. Eq. (4. 6e)] shows that the center of 
the wave packet moves uniformly with a velocity which 
is determined by both dispersive and stochastic effects. 
This gives rise to a stochastic group delay as well as 
the usual dispersive group delay. We also note that the 
peak power of the pulse is proportional to a-I. 

The average wave number evolves in space-time accord­
ing to the formula 

(K(z, t; a» = (1/( p}) J k {f (z, k, t; a» dk 

= ko [1 + m{z - Zo)]. (4.8) 

Comparing to Eq. (4.4), we may identify m[cf.Eq. (4. 6d)] 
as the mean modulation coefficient. 

We must emphasize that 0" as given by Eq. (4. 6c) is the 
width of the average pulse, and its operational definition 
required that one add together many pulses under 
varied (random) conditions and then measure the width. 
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This procedure yields a different result from that ob­
tained by measuring the width of each pulse and then 
averaging. 

Writing u2 out explicitly, one observes that for short 
times the dominant correction to aa is the part of 0"2 
linear in time, i.e., 

One may then differentiate between two possibilities: if 
m o > 0 ("chirp down"), a2 is a monotonically increasing 
function of time and the pulse width will expand; on the 
other hand, if mo < 0 ("chirp up") and I' < - (2Do/f3o), 
the pulse width will at first decrease (pulse compres­
sion). Since, according to Eq. (4. 6c), 0"2 is manifestly 
positive, it follows that the pulse width will ultimately 
expand. 10 

Similarly, for short times, the modulation coefficient is 
given by 

m ~ mo(l- 4Dot/0"5) + (f3ot/ko0"6)(1- 0"6k~mij). 

(4.10) 

In closing this section, we wish to treat several special 
cases. 

Case (i): Randomness, zero modulation (mo = 0, 
I' == 0).11 

The average intensity is given by (4.7), with 

0"2 == O"~ + 4Dot + f3~t2/0'5' (4.11) 

The term linear in time is due entirely to the random 
fluctuations of the electron density. The third term, an 
expression quadratic in time, results solely from the 
dispersive properties of the medium. The random and 
dispersive effects enter in the same way into the alge­
braic attenuation factor 0"-1 appearing in (4.7). 

The modulation coefficient is found to be 

(4.12) 

where 0"2 is now given by Eq. (4. 11). One notes that the 
modulation coefficient is proportional to the index of 
dispersion flo. Furthermore, since 0"2 is a monotonically 
increaSing quadratic function of time, m -7 0 as t -7 OJ • 

Case (ii): No randomness ('lj = 0), with modulation 
(mo ,.. 0). 

The intensity function is given by (4.7), with 

Zo = Zo + Vgot 

0"2 = O"ij[l + 2Y(f3ot/a5) + (1 + y2)(f3ot/O"ij)2] 

:::::: O"ij[(l + Yf3ot/0"5)2 + (f3ot/0"5)2]. 

(4.13) 

(4.14) 

Again for short times, the term in (4.14) linear in time, 
viz., 2yf3ot is the dominant correction to O"a. Therefore, 
the pulse width will first decrease before it expands if 
mo < O(Hchirp up"). 

The mean wave number is given by (4.8), with Zo as in 
(4. 13) and modulation coefficient 

mo + (1 + y2)(f3ot/u6ko) 
m= • 

1 + 2y(f3ot/u5) + (1 + y2)(f3ot/u5)2 
(4.15) 
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Case (iii): No randomness, zero modulation (mo = 0). 

Here we obtain the well-known results of dispersive 
spreading. The intensity assumes the form (4.7), with 
Zo given as in (4. 13) and 

(4.16) 

The mean wave number and the modulation coefficient 
are those of Case (i). 

5. THE DUAL BOUNDARY-VALUE PROBLEM 

In this section we shall consider the dual boundary­
value problem and, in the absence of random inhomo­
geneities, shall recover the recent results found by 
Millman and BellS in connection with the effects of 
ionospheric dispersion on a frequency-modulated pulse. 
In order to convert results for the initial-value problem 
(wave kinetic equation) to their counterparts for a boun­
dary-value problem (the usual case), we introduce the 
time To (analogous to Zo) defined by 

To = (z - zo)/[vgo(1- t 7)2W~o/~l6)]. (5.1) 

Rewriting Eq. (4. 7) for the mean intensity, we obtain 

< p(z, t; a) = (lTT2tl/2 exp[- (t - T 0)2 /T2J, (5.2) 

where 
T = O"/[vgo(l- j 7)2wto/Q6)]' (5.3) 

Since Eq. (5. 2) shows that the pulse is centered at 
t == To, we may replace the variable t in the slowly 
varying quantity 0" by To, thereby expressing the tem­
poral pulse width T in terms of the distance variable 
Z - zOo 

In particular, in the absence of fluctuations [7) = 0, Case 
(ii) of Sec, 4J, it follows from Eq. (4. 14) that the pulse 
width as a function of Z - Zo is given by 

where TO = O"o/Vgo. It is customary to use the variable 

which is related to the inverse square of the "slope 
bandwidth" of the medium,12 and the constant 

(5.5) 

(5.6) 

which is the initial rate of frequency sweep. Eq. (5. 4) 
may then be written 

(5.7) 

Similarly, the rate of frequency sweep, IJ., is found [cf. 
Eq. (4. 15) J to be 

1J.0(1 + 1J.0q) + q/T6 
IJ.= • 

(1 + lJ.oq)2 + q2/T~ 
(5.8) 

These results, Eqs. (5.7) and (5.8), are precisely those 
obtained by Millman and BellS by a different method. In 
the absence of initial modulation (1J.0 = 0), they are in 
agreement with Bek's analysis.13 
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6. CONCLUSIONS AND SUMMARY 

The problem of wave packet propagation in a randomly 
stratified plasma has been solved in the diffusion 
approximation by means of the stochastic wave kinetic 
technique. Although the basic equation to leading order 
is formally identical to the Liouville equation, it has 
been shown that when solutions of this equation are res­
tricted to be Wigner distribution functions then the 
stochastic wave kinetic method is capable of describing 
both coherent wave packet spreading and demodulation 
due to dispersion of the medium and incoherent wave 
packet spreading and demodulation due to stochastic 
fluctuations of the medium. 

Explicit formulas describing these effects have been ob­
tained and their significance has been discussed. 
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An n -body scattering process is studied in the framework of nonrelativistic time-dependent 
scattering theory. The probability is calculated that the n bodies emerge in cones C I'"'' Cn with 
apices at the origin of coordinates. Results are given for short-range and for Coulomb potentials. The 
results corroborate the usual interpretation of time-dependent scattering theory. 

INTRODUCTION 

This paper is a sequel to the paper I (Ref. 1) and has a 
similar purpose: to offer a geometrical account of n­
body scattering processes which is rigorously derivable 
from nonrelativistic quantum-mechanical time-depen­
dent scattering theory, thus corroborating the "usual" 
interpretation of scattering theory and at the same time 
calculating rigorously the probabilities of various ex­
perimentally interesting events. Specifically, in this 
paper we compute the probability (or, when necessary, 
the time-average of the probability) that starting from a 
given initial state at large negative times, n nonrela­
tivistic quantum-mechanical particles will emerge from 
a scattering process in n given cones with vertices at 
the origin of coordinates (Le., the probability that 
particle 1 is in cone 1, particle 2 is in cone 2, regardless 
of whether the particles are free or bound together to 
constitute a number of composite particles as t -> + (0). 
Some would argue that there are more interesting things 
than this to compute, such as the probability that various 
composite particles emerge in various cones. As will 
be seen, all these probabilities will be computed in the 
process of finding the probability we seek. Although we 
deal with both Coulomb and short-range forces, we do 
not give in this paper an analog of Theorem 2 of Ref. 1, 
which allows calculation of the probability in question 
for potential scattering without the introduction of ano­
malous factors. 

n-BODY SCATTERING INTO CONES 

Orientation: We use units in which If = 1. n non­
relativistic quantum-mechanical particles are described 
by assigning to each real number t a wave-function, i.e., 
a normalized element 1/It of £2(JR3n), the Hilbert space of 
complex-valued square-integrable functions on 3n­
dimensional Euclidean space. We write 1/It as a function 
of n three-vectors xl' ... ,~. 11/It(xl"'" Xn) 12 is the 
pOSition probability density (ppd) for the particles at 
time t, i.e., the probability denSity that particle 1 is at 
xl' ... particle n is at xn ' Simi!arly, if tlit denotes the 
Fourier transform of \fit ,then l\fIt(kl , ... ,kn ) 12 is the 
momentum probability density (mpd) for the particles at 
time t. \fit satisfies the Schrodinger equation 

where H is a self-adjoint linear transformation of the 
form 

H CC~ Ho + V. 

In (2),H o is given by 
n _ /:;. 

Ho=L; __ J, 

j=l 2 Inj 

(1) 

(2) 

(3) 

where In
j 

is the mass of the jth particle and /:;j is the 
(natural self-adjoint extension of the) Laplacean in the 
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jth coordinate. V is a multiplicative operator given by 
n 

v=L;vo'(x')+ 6 V .. (x.-x.), 
.1=1 J J l:5i<j S n 'J' J 

(4) 

where each Vi" 0:$ i < j :$ n, is a real-valued function 
on R 3, which J.e assume can be written as 

V . . (x) = V. ~l) (x) + V. 12) (x), 
'J 'J 'J 

(5) 

:vhere V;jl)(x) is square-integrable over JR 3 and Vi ~2)(x) 
IS bounded on R 3. Then according to a theorem of Kat0 2 

H is self-adjoint, with the same domain as H o. The 
assumptions we have made on the potentials are mild 
enough to allow most cases of physical interest, (e.g., 
Coulomb potentials, Yukawa potentials, etc.) We should 
remark at this point that the problem we will be investi­
gating, whether n particles will be in n cones at large 
positive times after a scattering experiment, is most 
natural if we actually expect all particles to emerge in 
some direction. If the static potentials V o' are nonzero, 
it is conceivable that some particles will finally be 
trapped near the origin, as we shall see, and do not 
emerge in any cone. The problem of whether the n par­
ticles are eventually in the n cones is thus most natural 
when all the V oj' j = 1, ... ,n, are zero, in which case 
we do expect all particles to emerge in some direction. 
For the sake of interest, however, we carry the V o· 
along in the analysis. J 

Just as in the earlier paperl (hereafter referred to as 
I), we can analyse the motion of free particles (JI = H 0) 
by writing 

-iHot _ COQo 
e - t t' 

where Cp is the "classical transformation for n par­
ticles" 

- (mlXl IntnXn ) 
xf --t-'"'' 

and Qt is just multiplication by a phase: 

(6) 

(7) 

(Qtf)(x l ,· •• ,xn ) = exp (i t m.x.2 /2t) f(xl , ... ,x). (8) 
j =1 J J n 

As in I, the factorization (6) implies that 

lim Ile-iRotf - cpjll = 0 
t-±oo 

(9) 

and that asymptotically, in integrating over ~~~f Teasur­
able set 5 of JR3n, the ppd determined from e oJ "can 
be replaced by" the absolute square of Ctf. (For the 
precise meaning of "can be replaced by", see Lemma 3 
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of I and the remarks after it.) Thus,n free fWantum­
mechanical particles with wave-function e-' °Yasymp­
totically behave like n free classical particles which 
started from the orillin of coordinates at time t = 0 
with mpd given by \ f (kl' ... , k n )\ 2. (Again, see the 
discussion in I.) Let us now consider n cones C l' .•. , Cn , 

each in three-dimensional space, defined by the equa­
tions 

(10) 

where nj is a unit vector in R3 and 0 < Q'j S 1. We ask 
for the probability p± that if n free particles are des­
cribed by the wave-function e-'Hotf , then as t ~ ± 00 we 
shall find particle 1 in cone C l' ... particle n in cone 
Cn • Using the remarks we have made above, we find 

P± = lim 1 ,\(e-iHoY)(x1'""xn)12dxl,··.,dXn 
t-"'±oo c1 x···xcn 

= lim 1 I(CPf)(xl, .. ·,xn )1 2 dxl ,· .. ,dxn t-±oO C1 x···xen 

where C 1 x ... X Cn is the topological product of the n 
cones, i.e., the set of all points (x!"," xn) such that 
Xj E C~, j = 1, ... ,n; - Cj is the reflection of Cj through 
the OrIgin; and the final result in (11) is obtained by the 
change of variables kj = mjxj It, j = 1, ... , n (see I). 
Thus we have arrived at tlie expected result: for large 
positive times, one of the particles will lie in a cone if 
and only if its momentum lies in that cone. A similar 
statement holds for large negative times. 

So far, all has gone in complete analogy with I. In I, 
however, once we have analyzed the behavior of the 
wave-function describing a free particle, we had all 
necessary information on the asymptotic behavior of 
a scattered particle, since such a particle could exhibit 
only this free behavior at large positive and negative 
times. In the n-body theory, however, it is well known 
that, in general, there are many other ways that n par­
ticles can enter or leave a scattering experiment than 
as n free particles. In the customary terminology, there 
are many other channels open to the particles. We now 
discuss this point briefly. 

A scattering experiment is described by a wave-func­
tion of the form e-iHtl/l 0 where H is not the free Hamil­
tonian but instead has the form (2). It may happen that 
the part of H which describes the mutual interactions 
of a certain subset r of the n particles allows bound 
states to be formed, so that if the particles in r were 
isolated from the others it would be possible for them 
to travel together as a "composite particle", and this 
is an additional complication in n-body scattering ex­
periments. In such experiments we may consider initial 
and final states in which the n (simple) particles are 
grouped into a number of simple particles and a number 
of composite particles, each composite or simple par­
ticle moving freely, and a set of particles bound near 
the origin by the static potentials V 0" By a "fragment" 
we shall mean a composite or a simple particle. An 
initial or final state of an n-body scattering experiment 
is specified by telling which fragments appear and des­
cribing the state of their motion, and specifying the 
condition of the particles bound near the origin,4 as 
follows: partition the n particles into m + 1 subsets 
r l' ... , r m' r m+ l' For l = 1, ... , m, the subset r z is to 
contain r1 + 1 particles, with r l 2: 0, and the particle or 
particles in r, will constitute a fragment. The subset 
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r m+ 1 is to contain the particles bound near the origin by 
the static potentials, and r m+ 1 may be empty, and will 
always be empty if all the static potentials VOj are zero. 

We do not admit the case in which r m+l is the entire 
collection of n particles, because this would describe a 
true bound state of the n-body system, i.e., an eigen­
function of the full Hamiltonian H, which would not figure 
in any scattering experiment. We shall deal with these 
true bound states separately. We note parenthetically 
that we shall sometimes speak as if the subsets r 1 con­
tained the indices of particles instead of the particles 
themselves. Let Y 1 and Zl' l = 1, ... , m, be the center­
of-mass and" internal" coordinates of the lth fragment, 
i.e., Y 1 is defined by 

YI = 6 
mjxj 

(12) , 
jErI Mz 

with 

Ml = 6 
jErI 

m j , (13) 

and Zl stands in general for a number of three-vector 
variables Zi, j = 1, ... ,r!, related to the Xj withj E r 1 
by equations of the form 

Yl 

Xj = Y I + 6 A~kZl', jEri' 
k4 

(14) 

In the case that r I contains only one particle there are, 
of course, no "internal coordinates". If r I contains more 
than one particle then we imagine the internal coordi­
nates to have been chosen in such a way that the Jacobian 
of the transformation from the set {Xj Ij E r z} to the set 
Yl' Zz is unity. For the subset r m+1' we denote all of its 
coordinates collectively by zm+l' We can now describe 
an initial or final scattering state of n particles by a 
wave-function of the form 

l/It = e-iHuY<Yl""'Ym)CPa (zl)"'CPa (zm)CPa (Zm+l)' 
1 m m+l (15) 

In (15), f is any square-integrable function of its vari­
abIes. For l = 1, ... ,m, cP a is the bound state of 

I 
energy E

al
, describing the internal structure of the lth 

fragment. If the lth fragment is a simple particle, then 
CPa = 1 and EN = 0 by convention. For any composite 

I ~I 

particle we aSSume that the norm II cP II = 1. (The norm 
0.1 

IICPa II is the norm in the space of square-integrable 
I 

functions of rl three-vector variables.) cP is the 
a m +1 

bound state of energy E , describing the way in which 
CX m+! 

the particles in r m+l are bound near the origin by the 
static potentials. If r m+l is not empty, we assume that 
\\CPa II = 1. If rm+l is empty, we take cP = 1 and 

m-tl a m+! 

Eo. = 0 by convention. H~ of (15) is defined by 
m+l ..... 

(16) 

-iH t 
Clearly, e a propagates the lth center-of-mass co-
ordinate, l = 1, ... m, according to the free Schrodinger 
equation with mass Ml' and assigns to the bound state 

-iE t 
CPa ' l = 1, ... , m + 1, the usual time-dependence e ai, 

I 
so that (15) describes a collection of m freely moving 
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fragments and some particles which are bound near the 
origin by static potentials. [We note in passing that all 
the terms in the sum on the right-hand side of (16) per­
mute with one another. This fact can be used to write 
-iH t e a as a product of simpler operators in a straight-

forward way, and we shall do this later.] It should be 
clear that the definition of H a depends only on (1) the 
partition of the n particles into subsets r l' ... ,r m+l 

(this determines the Y l and M l ) and (2) the selection of 
the bound states CPa , •.. , cP (this determines the 

1 <Xm+l 

E a / The subscript Ci on H a is supposed to be a multi-
index describing this partition into subsets and selec­
tion of bound states; each such partition and selection 
of bound states determines a channel of the n-particle 
system, that is, a way in which the n particles can enter 
or leave a scattering experiment. As a technical point, 
we remark that if the particles of subset r l have several 
different bound states CPal' CP~I' ..• with the same energy 
Ea ,then we select once and for all an orthogonal set of 

I 
such bound states and use only these when defining chan-
nels. (This is necessary to guarantee the orthogonality 
of the {R;J and of the {R~} discussed later, as well as 
that of certain of the Da also discussed later.) As an­
other point, we note that in the above account two chan­
n~ls with the same partition into subsets r l' ... , rm+l' 
dIfferent bound states, but the same value of L;l"A1 E , 
are considered distinct, while some authors (cf. Jauct:3) 
would lump these into a single channel. This is largely 
a matter of convenience. 

It is not difficult to see that there is at most a countable 
number of channels. An individual channel is to be de­
noted by the index Ci. We shall, however, sometimes 
prefer to have a slightly more detailed notation for a 
channel, namely we shall sometimes write 

(17) 

where p is an index descr ibing the partition of n into 
subsets r l' ... , r m+l and 1) p is an index describing the 
selection of the bound states once the partition has been 
made. Since there are only finitely many partitions, the 
set of p 's is finite. For fixed p, the possible selections 
of bound states, and hence the number of 1) p 's, is at most 
countable. Whenever, in the sequel, a sum is taken over 
Ci or p or 1) p' it is to be understood that the sum is to be 
taken over all possible values of the index. As an exam­
ple of the use of the notation (17), the reader should 
convince himself that if two channels have the same 
value of p, then the corresponding channel Hamiltonians 
differ only by a constant. 

With these definitions in hand, we can state the following 
central facts from n-body scattering theory (see Cook, 
Hack, Jaunch and ZinnesS): 

Proposition I: Let D a be the closed subspace of 
£2(R3n) consisting of all functions of the form 
1(Y1 , ••• , Ym)CPa (zl)" . CPa (zm+l),where 1 runs 

1 m+l 

through all square-integrable functions of Yl' ... , Ym, 
and Yl' zl' are defined as in Eq. (15), and specified by the 
multi-index Ci. Let P a be the projection operator for the 
subspace Da' Then if the potentials Vi" 0 ~ i <j ~ n, 
satisfy certain mild restrictions [it sJrfices that each of 
them can be written as the sum of a function in £2(R3) 
and a function in £P(1R 3), with 2 < p < 3], the strong 
limits ' 

(18) 

exist. (The operators 0& are the Ml'Iller wave-matrices 
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for our theory.) We denote by Rt" the range of n&, and 
write Ft" for the projection on R&. Then n& is a partial 
isometry with initial set D a and final set R &' i.e., we 
have 

Further, as Ci varies the subspaces R;' are pairwise 
orthogonal, as are the R~. We thus have 

Further, we have the intertwining relations 

(19) 

(20) 

(21) 

(22) 

The proofs of the above statements are in the literatureS 
and we do not give them. 

We denote by R ± the orthogonal sum of the subspaces 
R& where Ci runs through all possible channels. We 
assume henceforth that our theory is asymptotically 
complete, i.e., we assume (1) that the strong limits !"I± 
exist,and (2) thatR+ =R- and thatR± is the orthogon~l 
complement of the subspace spanned by the previously 
mentioned true bound states of the theory, i.e., the eigen­
functions of the full Hamiltonian H, which we discarded 
previously in our discussion of initial and final states 
for scattering experiments. For important results on 
asymptotic completeness, see the papers of Ikebe, of 
Fadeev, and of Hepp, and the book of Kato. 6 

A typical element 1 of R+ has the form 

(23) 

with fa E D a and 

(24) 

Since n;. is isometric on D a' (24) implies that 

L; 111 al12 = L; Iln;..1 al12 < CX). (25) 
a a 

The projection of 1 on R;' is n;,l a; whence, USing (20), 
we obtain 

(26) 

Applying n;. * on the left and using (19) yields 

Pala =Pa n;,*l. (27) 

Since both fa and n~ *f belong to Da, (27) can be rewrit­
ten as 

(28) 

Now the 1 a need not be pairwise orthogonal because the 
D a are not necessarily orthogonal. However, if we write 
Q as (p, 1) p)' as in (17), then for each fixed p it is true 
that D(p. ij ) is orthogonal to D(p, ij' ) for 1) p '" 1)p' since the 
differenlbound states occurrinl in the definitions of 
(P,1)p) and (p,1)') are orthogonal to each other. (This 
is partly a resuft of our convention on the definition of 
channels in case the particles in a given r

l 
have several 

different bound states with the same energy. See the 
earlier discussion of this point just after the definition 
of "channel". ) Thus 1 (p. ijp) is orthogonal to f (P.ll'p) • 
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Because of this fact and because ~allf al12 converges, 
we can conclude that for each fixed p the sum 

f(p) == ~ f (Mp) 
ijp 

(29) 

converges. Since there are only finitely many P's, the 
sum 

(30) 

converges. Although we have shown that the convergence 
takes place only when the sum is done in a special order, 
the reader can easily convince himself that this special 
order is irrelevant. Nowbecause e- iHat is a unitary 
operator mapping Da into itself, it follows in a similar 
way that the sum 

(31) 

converges for any t. We are now in a position to state 

Lemma 1: Let f E R+ and let U+(t)f be defined by 
(31). Then 

lim Ile-iHtf-U (t)fll == o. 
t-++co + 

(32) 

The proof of this lemma is straightforward. We first 
assume that only a finite number of fa's are nonzero. 
Then, because we are dealing with a theory in which the 
limits (18) exist, we have 

-1' iHtU (t)f == '\' -1' iHt -iHatf == '\, 0+ f == f 
st--++~m e + L..J St--++~ e e a L..J a a 

a a (33) 

and (33) implies (32) in an obvious way. In the general 
case, in which infinitely many fa's may be nonzero, the 
argument is completed using a straightforward approxi­
mation procedure, resting on the fact that we have the 
desired result for finitely many nonzero fa' on (25), and 
on the remarks about orthogonality of certain Da's used 
to show that the sum in (30) converges. 

Let us suppose than an n-body scattering process is 
initiated with the particles in a state described by the 
wave-function 

IlfBil == 1 (34) 

with f BED B' What is meant by this statement, of course, 
is that the entire scattering experiment is described as 
usual by a wave-function 1/It of the form 

111/1 0 11 == 1, 

but that this 1Vave-function is to be specified by the 
requirement 

(35) 

(36) 

Because the limits in (18) are assumed to exist, it is 
easily seen that (36) uniquely specifies the state 1/1 o' In 
fact, 

'#0 = 0'BfB, (37) 

so that saying an n-body scattering experiment is initi­
ated with the particles in a state described by the wave­
function e-iHBtfB is the same as saying that the wave­
function 1/It at all times is given by 
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(38) 

Clearly 1/1 0 of (37) and (38) belongs to R- and hen~e to 
R+, since we assume R- == R+. Hence by our prevlOus 
discussion e- iHt 1/l 0 will converge as t ~ + co to U+(t)1/Io' 
Since the expression for U+(t)1/Io is interesting, we write 
it out: 

U.(t)1/I o == ~ e-iHato;,. *1/1
0 

== ~ e-iHatO;" *0'BfB 
a a 
'\' -iH t 

==L..Je aSaBfe' (39) 

where 

SaB == 0;" *0'B' (40) 

SaB is sometimes called a "partial S-matrix" from 
channel (3 to channel Q!. An intuitive statement of our 
result is that if we "send in" e-'HByB,we will "get out" 
~ae-iHatSaBfl3' We could also imagine sending in some­
thing of the form ~B e-iH13tf13' with Zl3l1f13112 = 1 (this 
is the same as saying that 1/1 0 is given by Z13 nBf 8' and 
111/1 011 == 1). The reader is left to imagine the results for 
himself, as there is little to be gained from writing 
them down. 

We now ask the following question: suppose that we are 
given n cones C l' ... ,Cn in three-dimensional space, 
defined by the Eqs. (10). What is the probability 
P(j13' C l' .•• , Cn ) that if we "send in" e- iH13 tf13 , then at 
large positive times particle 1 will be in cone C l' ..• , 
particle n in cone Cn ? We can write down an expression 
for t!1is probability using the fact that" sending in 
e-iHBtf13" means that the wave-function at all times is 
given by (38). Then since 11/It l 2 is the ppd for the par­
ticles at time t, we have (provided, of course, that the 
indicated limit exists) 

with 

P(jB;C!, .•. ,Cn,t) 

== Ie X"'xC 1 (e-iHtoBf13)(X1, .•. ,xn)12dx1, ••• ,dx,.. 
1 n 

(41b) 

In (41b), as before, C 1 X ••• X Cn denotes the topological 
product of the cones. Because e-;Ht 0Bf 13 converges 
strongly to U.(t)0'BfB as t ~ + co, we may, in investigat­
ing the existence of the limit in (41a), replace the inte­
grand on the right-hand side of (41b) by the absolute 
square of (U+(t)0'BfB)(x1, '" ,xn ). (See Lemma 3 of I.) 
We shall do this presently. In order to cope with the 
mess which wUl result, we first prepare some lemmas, 
which require the introduction of additional notation. 

Let Q! be a channel of our system, with its associated 
partition ry, ... , r~+l of the particles and its bound 
states rf>a ' ••• , rf>a • [Note: the number m + 1 of subsets 

1 m+l 

ri depends on the channel Q! and we could indicate this 
by writing m as m (Q!). In order not to clutter the nota­
tion, however, we shall write simply m, except when, in 
dealing with several channels, it is necessary to write 
In (Q!) for clarity. A similar convention will be used with 
various other channel-dependent pieces of notation for 
objects of secondary interest, e.g., PI of (42). Various 
important symbols like rr, XB will carry the index Q! 

al 

throughouL] We define the center-of-mass coordinates 
Y l' ..• , Y m by (12), and the center-of-mass momenta 
PI'" "Pm by 
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PI == L; kj' l==l, ... ,m, (42) 
jEfr 

where kj is the momentum of particle j. [Equation (42) 
can be interpreted either as an equation between vectors 
in momentum space, i.e., after Fourier transformation, 
or as an equation between differential operators, replac­
ing k. by - iV., etc. Naturally, the two interpretations 
are ieally thEf same. We shall mainly be talking in 
terms of the first.] We define 

T 01 = - Ll.y /2 MI' 
I 

Then, write 
m 

(43) 

T", == L; T 01' 
1=1 

(44a) 

(44b) 

We have, according to (16), 

(45) 

We are going to be interested in the topological product 
C 1 X ••• X C

n 
of the n cones of (10), and we introduce 

some notation relating this topological product to the 
partition r~, ... , r~+l' We denote by XC;"'n the charac­
teristic function of C 1 X ••• X Cn : 

f1 (Xl"" ,Xn ) E C 1 X···X Cn (46) 
Xc (xl' ... , Xn) == ) 

l" . n ~ 0 otherwise. 

We shall frequently in the sequel consider characteris-
tic functions like Xc as operators on ~2(1R3n) in an 

1···n 
obvious sense-namely, the operation is multiplication 
of an element of ~2(1R3n) by XC; ... n' XCj will denote the 
characteristic function of the set defined by the condi­
tion Xj E Cj : 

{
I, Xj E Cj 

Xc (xl' ... ,xn ) == (47) 
) 0, otherwise. 

We also introduce the characteristic function XB
exl 

of 
the set B exl in which the variables with indices in rl' 
are restricted to their respective cones. We have 

Clearly, 
n m+l 

Xc = n Xc == n XB • 
, .. ·n j=l j 1=1 exl 

(48) 

(49) 

Finally, we introduce the intersection lexl of the cones 
with indices in rr: 

lexl = n Cj • 
jEI-r 

I exl is, of course, a subset of IR 3 • 

characteristic function of I exl: 

)1, 
Xl (X) = ) 

exl ~O, 

X E lexl 

otherwise. 

(50) 

We write Xl for the 
exl 

(51) 

We define MI to be the operation of multiplication in 
exl 

momentum space by the characteristic function of the 
set in which the center-of-mass momentum PI is res­
tricted to I I' i.e.,MI is defined by the equation 

ex 0.1 
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(52) 

where PI is defined by (42). The reader will note that, 
except for the definition of Eex in Eq. (44b), none of the 
notation defined above depends on the bound states CPex 

I 
of the channel a, but only on the partition q> ... , r~+l' 
Weare now in a position to prove 

Lemma 2: Let Xc ,Ho.,MI , and XB be as above. 
Then l"'n exl exl 

S - 11m e ex e ex = n M , . iH t -iH t (m ) 
t .... oo XC, ... n 1=1 lexl XBex(m+l) 

(53) 

where" s -lim" means that the expressions on each 
side of (53) are to be considered in the obvious way as 
operators on ~2(R3n) and that convergence takes place 
in the strong topology. 

Proof: From (45) we find 

(54) 

the last step following since Eex is just a real constant. 
Now because all the operators T 01 of (44a) permute, we 
have 

(55) 

We recall now the second expression for Xc in (49). 
1- ··n 

We note that T 01 affects only the coordinates of par-
ticles in rlex. Further, Eq. (48) shows that XB actually 

Cil 
depends only on the coordinates of particles in rr. 
USing these facts we find 

(56) 

The rest of the proof consists in showing that we have 

1== 1, ... ,m. (57) 

This will prove (53) because each of the operators 
e i TOl t X B e - i TOI t is a projection and thus bounded in 

exl 
norm by unity for all t, so that convergence of the sep-
arate factors as in (57) will imply convergence of the 
product as in (53). 

-iT t 
The operator e 01 can be factored into the product of 
two simpler unitary operators in analogy to the way we 
factored e-

iHot in (6). Namely, we have 

-iTolt C Q e == I.t l,t> (58) 

where 

(Q f) ( ) iM I Y F 12 tf ( ) 
I, t xl' ••• , Xn == e Xl' •• , , Xn (59) 

and 

(Cl ,tf)(x1' ••• , xn) = (MJit)3/2 e iMI 
Yf/2t (Flf)lpl =MIYllt • 

(60) 
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The expression FI f means the Fourier transform of f 
with respect to the one center-of-mass variable Y I [see 
(12)]: when f is "sufficiently nice" the definition is 

(Flf)(pl' zl;Xj) = [1/(21T)3/2] J e-iPI'Ylf(xl"" ,xn)dYl 
(61) 

and, for general f E £2, FI f is obtained by a familiar 
limiting process. On the left-hand side of (61) xj stands 
for all x.' s not in r I' and we have written FI f as a func­
tion of xl" PI' and the" internal coordinates" zi of r I' 
As indici:tted in (60), the operation CI t requires that PI 
of (61) be set equal to M/Y/t. Because of (58) we have 

iTOI -iTol Q* C* C Q e X B e = I tit X Bit I t· exl .. exl' . 
(62) 

It should be clear from (59) that 

s-limQlt=l (63a) 
t-oO • 

and 

s-lim Q; t = 1. (63b) 
t~oo • 

We now examine the behavior of the operator C; t X 13 . exl 
CI.t ' If f E £2(1l{3n), then by working out the definition of 
the operator C ~ t in a straightforward manner we can 
verify that, in the notation of (61), we have 

(FICtt X Bal CI.tf)(PI' Z/; xi) 

= X Bal (xl' •.• ,xn ) IY
I 

= tPI IMI (FI f)(pl' Z/; xj). (64) 

Thus FIC;'t XB
al 

Cuf is obtained from FI f by multiplica­
tion with a simple function. We now study this function. 

According to the definition of X B ,we have 
al 

{
I, 

XB (x!"" ,xn ) = 
al .0, 

Xj E Cj for allj Err, (65) 

otherwise. 

Henceforth we suppress the variables not in rr, on 
which X B depends trivially. Using equations (14) to 

exl 
express the Xj ' s with j E rr in terms of Y I and "internal 
coordinates" , and setting Y I = tp/Ml' we have 

X Bex/ (X1 , ••• ,xn)IY/=tPIIMI 

tp YI 

....!:... + 6 A I Z k E C. for all J' E r a 
M -1 Jk I J I' 

I k- (66) 
otherwise. 

The reader should not find it hard to convince himself 
that except at the point PI = 0 the conditions on the vari­
ables zt in (66) become irrelevant as t -) 00, since the 
sums of zts are "swamped" by the term tp/MI so that 
asymptotically we need ask only whether or not tpjMI 
E Cj • Furthermore, we have (tPI/Ml) E C if and only 
if PI E Cj • To put the matter more brier(y and precisely, 
the following is easy to prove: 

pointwise lim XB (xl"" ,xn)ly -'P tiM = XI (PI)' t-++oO al 1- I I al 

where XI (PI) is defined by 
al 

{
I, PI E Cj for all j Err, 

Xlal (PI) = 0, th . o erWISe, 
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and is just the characteristic function of the intersection 
of the cones defined in (51). Writing XI Fl f for the 

al 
function whose value at the point PI' z I' xj is XI (PI) 
(Fzf) (PI' zl' xj), we now have exl 

IIFIC~tX BalCI,tf - XlalFlf 112 

= J IXBal(x1"'xn)IY1=PltIMI 

- Xlal (P/ )1 2 1 (Flf)(pl'z/;xj)12dPldzldx; 

~O. 
t-+oo 

(69) 

Convergence to zero in (69) is obtained from Lebesgue's 
dominated convergence theorem. The integrand in (69) 
converges pointwise to zero almost everywhere by (67), 
and it is bounded by the fixed integrable function 
41 Fzf 12. Hence the result. From (69) we see that 
FIC1*t X B CI t f converges strongly to XI FI f as t -) + 00. . ai' 0.1 
Applying the continuous operator FI-1 = Ft to both these 
elements, we obtain 

A little thought will convince the reader that 

where MI is defined by (52). Thus, finally, we have 
al 

s-lim CI*tXB CI t = MI • 
t-oo I al' al 

(70) 

(71) 

(72) 

Combining (72) with (62) and (63) and using the fact that 
QI,t' Q/~t' and C/~t X Bal Cl,t are all bounded in norm by 
unity, we finally have 

(73) 

and this completes the proof of Lemma 2. 

Lemma 3: Let Cl and {3 be two channels whose corres-
ponding partitions are distinct. Let Xc be as before. 
Then l'''n 

. iHo t -iH t 
W - 11m e " X e ex = O. 

t-+oo c1 ••• n 
(74) 

Proof: This lemma holds because of the fact that 

(75) 

The proof of (75) is a simple matter-we do not give a 
formal proof, but only remark that since the partitions 
for Cl and (3 are not the same, the sums of Laplaceans 
occurring in Ha and H{3 do not cancel each other in (75), 
and the operator in (75) "oscillates itself to death" as 
t -) 00, essentially because of the Riemann-Lebesgue 
lemma. Once (75) is established, we prove (74) by writ­
ing 

(76) 

By Lemma 2, the factor in parentheses on the right-hand 
side of (76) converges strongly to a constant operator as 
t -) + OJ, while the unitary operator eiHBte-iHat converges 
weakly to zero. From these facts it follows simply that 
the entire product on the right-hand side of (76) con­
verges weakly to zero, proving the lemma. 
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Lemma 4: Let O! and ~ be two channels whose corres-
ponding partitions are identical. Let Xc be as before. 

l··-n 
Then if Ea and E8 are defined as in (44b), we have 

s-lim [e iH8t e- iHat _ e i (E8-Ea )t (0 M ) 1 
t ... oo XCI".n 1=1 Ial X Ba (m+l ~ 

= O. (77) 

Proof: This is a direct consequence of Lemma 2 and 
the fact that, because O! and ~ have identical partitions, 
H a and H 8 differ only in the energies Ea and E 8• 

We can now continue with our evaluation of the prob­
ability PUB; C l' •.• , Cn ) that if we "send in" the state 
e-iH8tfa then for i = 1, ... ,n particle i will be in cone 
Cj at large positive times. Inserting, as promised, 
U+(t)o,""e/s for e- iHt o,"Bf8 in the integral occurring in 
(41), we have 

lim PU8iC1" .. ,Cn,t) 
t-..+oo 

== lim 1 I (u.(t)o,sf8)(x1, ••• ,xn)1 2dx1' .. dXn 
t ... +oo cl x .. • xCn 

(78) 

[Note: in (78), it is not yet clear that the indicated limits 
exist. We shall see that sometimes they do and some­
times they do not. To deal with both possibilities simul­
taneously, we have used == signs instead of = signs in 
(78). These are to be interpreted as follows: limt ... +oo 
A(t) == lim t ... +oo B(t) means lim t ... +oo (A(t) -B(t» = O. 
Thus the first == in (78) implies that to investigate the 
existence of the limit of PUs; C lI •.• , Cn' t), it suffices 
to investigate the existence of the limit of the integral 
on the right-hand side of the == sign, since if either 
quantity has a limit they both do, and the limits are 
equal. This was explained after (41}-for the proof that 
(78) follows from (41), compare the proof of Lemma 3 
of I. Similar use of == signs is made later.] 

For simplicity we shall analyze the case in which the 
sum over O! on the right-hand side of (78) is finite. An 
infinite sum can then be dealt with by a straightforward 
but somewhat clumsy limiting process (based on the 
finiteness of .6allSa8 f8 11 2) which we do not give ex­
plicitly. The results for an infinite sum are formally 
the same as those we will get for a finite sum. If the 
sum over O! in (78) is finite, then we can write without 
more ado 

lim PU8;C 1,,, .,Cn,t) 
t-fo+OO 
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X (SijpSf8' ~~: Mln/Bijp(m<np)+I)Sijp8f8)] , (79) 

where the last line deserves some explanation, namely: 
To obtain it, we have made use of Lemmas 2,3, and 4. 
All terms in the sum for which (JI = o!' have been evalu­
ated by Lemma 1. Terms in which the partitions for 
O! and o!' are different have been omitted by Lemma 3. 
Writing O! = (p, 1/ p)' o!' = (p', 1/1,,), the remaining terms 
are ones in whicnp =p' but 1/p ;;t 1/1,. In the second sum 
in the last line of (79) the idea is to write (p, 1/ 1') instead 
of O! and (p,1/1,) instead of O! '-since the entry"p" carries 
no information here, however, we have simply replaced 
O! by TJ p and o!' by TJ 1,' We have evaluated the terms 
with p = P', TJ p ;;t TJ p' by Lemma 4. We have also called 
attention to the previously mentioned fact that m depends 
on O! by writing it as m (O!) [or m (1/ p)]' In the analysis 
to follow, where we discuss just one term, we write as 
before m instead of m (O!). 

The task of analysing the last expression in (79) is not 
as hard as it looks. The first remark to be made is 
that the functions SaS f 8 have a very special form, since 
for any O! we have SaS f8 E Da' Thus we can write 

The operators MI ,l = 1, ... ,m, affect only the func­
al 

tion ga8 of the center-of-mass coordinates Y)., •.. , Ym 
and not the functions CPa (zl)' ... , CPa (zm+1)' The 

1 m+l 
operator X B affects only cP a • In the inner pro-

a (m+l) m+l 
duct (Sa8f8,nr=1MIal XlJa (m+I)Sa8 f 8),we can change 
variables to the set Yl' " ., Y m , zl"'" zm' zm+1' The 
integration over z1' ... , zm is entirely unaffected by the 
product of operators in the inner product and contri-
butes a factor of unity since cP , ••• , cP_ are normal-a l ..... m 

ized. Taking account of this, we have 

S f,nM Sf ( 
m ) 

a8 B 1=1 Ial X Ba (111+1) a8 B 

= f ga8(YlI " .,Ym) n1 MIal ga8 (Y1 ' .• . ,Ym) 

x dY1 '" dYm 

x f CPa (Zm+1)XB ( ) (zm+1) CPa (zm+l)dzm+1 , 
m+l a m+l m+l 

(81) 
where in (81) MI operates on the function g a8 in the 

exl 
obvious way. [Previously MI was defined only on 

al 
.c 2(R3n). When acting on SaeJB,M1 affects only the 

al 
function gaB' We have written the result as MI gaB'] 

al 
We can rewrite (81) using the definition of MI as: 

al 

(Sa8 f8' il MIal X Ba(m+l )Sa8 f B) 

=J Ia 19:;(Pl'·"'Pm)12dPl,,·dPm 
Ia1X ••• X lam m 

X ~ I CPa (zm+1)1 2dzm+1 , 
a (m+l) m+1 

(82) 

where B a(m+l is the subset of R3S in which each of the 
Sx;'s in r::'+l (i.e., the Xi'S we have represented by zm+l) 
lies in its corresponding cone, and g-;; is the Fourier 
transform of gaB in all of its variables. 

Before analysing the "cross terms" in the second sum 
of the right-hand side of (79), we pause to examine (82). 
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The inner product on the left-hand side of (82) is the 
contribution of the outgoing channel Q' to the probability 
we wish to compute, and we can interpret the expression 
for this contribution on the right-hand side of (82) as 
follows: if T a is defined by (44a), then 1 (e- iTat 

gaB (Y l' ..• , Y m) 12 is the ppd for the centers of mass 
Y l' ... , Y m of the fragments in Q' in the outgoing state 

e- iHat 
Saafa and 19;;e(p1' ... 'Pm)12 is the (constant!) 

-'H t 
mpd for these centers of mass in the state e • a S aB fa' 
The first integral on the right-hand side of (82) is there­
fore just the probability that the center-of-mass momen­
tum of the fragment 1 lies in the intersection [ al for 
1 = 1, ... , m. It is not hard to see physically that this 
is the same as the probability that all the particles of 
all the fragments 1 = 1, ... ,m asymptotically will be 
found in their appropriate cones: let i E r l be the index 
of a particle in the lth fragment. Since the particles 
constituting a fragment travel together, particle i will 
asymptotically be in Ci if and only if the fragment 1 is 
asymptotically in C;> and this in turn will be true if and 
only if the center-of-mass momentum PI of the fragment 
belongs to Ci • All particles in fragment I will asymp­
totically belong to their corresponding cones if and only 
if PI belongs to all of the cones Ci with i E rl'that is 
to [al' This confirms the interpretation of the first 
integral on the right-hand side of (82). 

Since 1 ¢a (zm+l)12 is the (constant) ppd for the par-
m+l 'H t 

ticles in r m+1 in the state e-' a SaB fa' and B a (m+1 is 
the set defined after (82), the second integral in (8~) is 
by definition the probability that the particles in r ",+1 
are in their respective cones-asymptotically or not, it 
makes no difference, since this latter probability is 
time-independent. Since the right-hand side of (82) is 
the product of the two integrals we have discussed, we 
have now explained why this right-hand side gives the 
probability for the particles to wind up in their respec­
tive cones if the outgoing channel is Q'. We must now 
deal with the "cross-terms" in the second sum of the 
right-hand side of (79). In analysing a term of this sum, 
we shall write m instead of m (1)). 

To analyse a typical term of the second sum on the right­
hand side of (79), we first write down expreSSions for 
the elements of .,c2(R 3n) occurring in the inner product 
in this term: . 

(S ij' a f B )(X1 , •• ., ~ ) 
p 

= g ij' a (y l' ... , Y n ) ¢ ij' 1 (Z1) .•. ¢ ij' (m+1) (Zm+1)' 
p p p (83b) 

Note that there are as many bound states in (83a) as in 
(83b) and corresponding bound states have the same sets 
of variables. This is because the channels (P,17p) and 
(P,1)I,) have the same partition. [In (83), as in (79), we 
are using 1); as an abbreviation for (p, 1)p), etc.] The 
selection of bound states in (83a) and (83b) must, how­
ever, be different, because in the second sum on the 
right-hand side of (79) we are only interested in the 
case f3 p '" f3'p. Now in the inner product occurring in 
the term we are analysing, the product 01"=1 MI XB 

ij pi ijptn+l) 
does not affect any of the "internal variables" z1' ... , zm' 
Changing variables in the inner product to Y 1, ... , Y m, 
z1' .•• , zm' zm+1' we see that the integration over 
z1' ... ,zm produces the factor (cp ij l' cP ij' 1) ... 
(¢ij m' ¢ij'm)which is either unity 01 zero Pas the two sets 

'P 'P 
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of m bound states in question are identical or not. If they 
are not identical the term we are analysing vanishes, so 
we proceed on the assumption that they are identical. 
Since the selection of bound states specified by 1) p and 
1)'p is different, this must mean that 

(84) 

The bound states ¢ij (m+1) and ¢ij'(m+1) are then ortho­
gonal. Arguing as irf our earlier Siscussion of the first 
sum on the right-hand side of (79), we can see that the 
inner product in the term we are analysing now becomes 

D(1)p,1)'p)=i, gij (Y1'''''Ym ) 
IijplX '''Xlijpm P 

X g ij' (Y l' ••• , Y m) dY 1 ..• dY m 
p 

X ~ ¢ij (m+l)(zm+l)¢ij'(m+l)(zm+1)dz m+1 • (85) 
ij p(m+l) p p 

B ij (m+l) is, of course, the set in which each coordinate 
p 

Xi with i E r m+l is restricted to its appropriate cone, 
and although the bound states in the integrand are ortho­
gonal, the integral over only the set Bij (m+1) need not 
vanish. We now have for the second sJ'm on the right­
hand side of (79) the expression 

S2 (t) = ~ ~ exp[i(Eij - Eij' )t]D(1) p' 1)~), (86) 
P ijp"ij'p p p 

where D(1) P' 1)'p) is given by (85) when only the bound 
states ¢ijp(m+l) and CPij},(m+l) differ, and is otherwise zero. 
Using (82), we now write 

lim P(js;C 1 , ••• ,Cn,t) 
t-++oo 

where S2(t) is given by (86). 

We now make several remarks. First, if all the static 
potentials V 0' were zero, then there could be no par­
ticles trapped near the origin, and the set r m+l would 
always be empty. The case in which a term of S2 (t) was 
nonzero would never arise, so that S2 would vanish. The 
integral over zm(a)+l in the sum on the right-hand side 
of (87) would not appear. The limit indicated in (87) 
would then exist, and we would have the result: 

Thearem 1: Suppose the Hamiltonian H of (2) des­
cribing n particles is such that the limits 0 & of (18) 
exist and the requirement of asymptotic completeness 
is satisfied. Suppose also that the static potentials 
VOj(xj), j = 1, .. . ,n,inH are all identically zero. Then, 
with the notation defined previously, we have 

P(jB;C 1"" ,Cn) = l!r.?oo P(js;C l ,··· ,Cn,t) 

= lim 1 1 (e- iHt 0'8 f B)(x1' ... ,xn )1 2 dx1 ••• d~ 
t .... +oo c1 x··· xCn 

=~~ I liaB(Pl'···'Pm(a»12dP1···dPm(a)· 
a aI X"' X am(a) 

(88) 

The significance of the integrals occurring on the right-
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hand side of (88) has already been explained, and in view 
of this significance we ought to consider Theorem 1 as 
a mathematical verification of "just what we expected 
physically" (for the case when all the V O· vanish): The 
probability for the particles to appear in] their respec­
tive cones is a sum. Each term of the sum represents 
the particles emerging in a definite channel G', and gives 
the probability that the center-of-mass coordinate of 
each composite particle is in the appropriate intersec­
tion of cones. It is noteworthy that the various channels 
represented in (88) do not" interfere" with each other­
each contributes independently to the sum. We also re­
mark that we could write down immediately, by selecting 
the appropriate term of (88), the probability that the 
particles emerge in a definite charmel with each com­
posite particle in a specified cone. This is a probability 
frequently sought in scattering theory, and it is a plea­
sant feature of our approach that all such probabilities 
can be read off in a straightforward way from the one 
equation (88). The proof of Theorem 1 seems to require 
a lot of writing, although it is straightforward. Theorem 
1 is the statement of the result on scattering into cones 
in the situation when the question concerning scattering 
into cones is most natural, as discussed at the beginning 
of this paper. The case when there are no static poten­
tials is actually also the most realistic case physically, 
particularly if one wants to deal with the recoil of the 
target one is bombarding. Nevertheless, we go on to 
make some remarks about the situation in which the 
V OJ do not vanish. 

When the V OJ do not vanish, the D(1/ p' 1/p) in (86) need 
not vanish, and of course in this case S2(t) will not con­
verge as t --) + 00 unless by some stroke of luck we have 
E~ = E~, whenever D(1/ p ,1/p) 7- O. The physical reason 

p p 
for the nonconvergence of S2(t) is not far to seek. 
Rather than try to disentangle the notation involved in 
the n-body problem, we give the reason by a Simple 
example: consider a single particle acted on by a poten­
tial V, and suppose there are normalized bound states 
cf> l' cf> 2' ••• ,with energies E l , E 2 , •• '. We ask for the 
asymptotic probability that the particle is in a cone C 
when the state of the particle is 

cf> t(x) = 6 e- iEn t Cncf>n (x), 61 Cn 12 < 00. (89) 
n n 

We assume for convenience that the sum in (89) is finite, 
so that there are no later convergence difficulties. If 
the sum in (89) is infinite, we can use a limiting process 
to obtain the same results. The required probability is 

(90) 

and the limit in (90) does not exist because the ppd for 
the particle fluctuates in a regular way, so that as time 
goes on the probability for the particle to be in the cone 
does not approach a limit. It is, however, sensible to ask 
for the time average of the probability that the particle 
will be in the cone C. This is just the Cesaro limit: 

We can write [note the analogy to (87)] 

J 16 e-iEntC cf> (X)1 2 dx 
C n n n 

(91) 

=61cn 12J lcf>n(x)12dx+S2(t) (92) 
n C 

with 
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5
2

(t) = 6 ei(En-En,)td(E;" En')' 
n .-en' 

(93) 

where 

(94) 

It should be clear that the Cesaro limiting process of 
(91) will not change the constant first term of (92), and 
will remove all terms of S2(t) for which En 7- En" while 
leaving unchanged terms of S2 (t) with En = En" Thus 
we have 

p = 6 ICn 12 J I cf>n(x)1 2 dx 
n C 

+ 6 (95) 
n;ll!n' 

En =E~ 

We could write P in a slightly more attractive form if 
desired. Namely, we could group together all cf>n 's with 
the same energy E and call the result tJIE : 

(96) 

Then we would have instead of (95) the equation 

(97) 

The cross-terms in (95) arise because wave-functions 
cf>n with the same energy contribute "together" to P-the 
ppd determined from iJlE is not oscillatory. The expres­
sion (97) makes it somewhat clearer that the sums in 
(95) will converge when n is infinite. 

The behavior of the particles near the origin in our n­
body problem is analogous to the behavior of the par­
ticle we have just been discussing, and is the origin of 
the nonconvergent part S2 (t) of (87). By resorting to the 
same method as before, we can compute the Cesaro 
Limit, i.e., the time-average PU8 ; C I ' ... , Cn) as 
t --) + 00 of the probability that the particl~s will be in 
their respectiv~cones if we "send in" e-'H8tf8 . The 
expression for P U 8; C l' .•• , Cn ) is a direct analogue of 
(95). Namely, we have: 

Theorem 2: Suppose the Hamiltonian H satisfies the 
hypotheses of Theorem 1, except for the hypothesis that 
the static potentials V o· are all zero. Then, in the nota­
tion defined previously: we have 

X dXI ••• dXn} dt 

= 6 J Ii a8 (PI' ... 'Pm(a)12 dPI •.. dPm(a) 
a la1 x··· Xlam(a) 

X ~ I cf> a (m(a) +1)(Zm(a)+l) 1
2dz m (a)+1 

a (m(a) +1) 

+6 
p 

(98) 

We could absorb the cross-terms D(1/ P' 1/1.) into the first 
sum just as we did with the analogous terms in (95), but 
this would just be an exercise in notation changing. The 
explanation of these cross-terms remaining in (98) is 
entirely analogous to the explanation of the analogous 
terms in (95). 
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With Theorems 1 and 2, we have reached our goal of 
computing the probability (or when necessary the time 
average of the probability) for the particles to be in 
cones C l' ... ,Cn after a scattering experiment. We 
recall the expression (41) from which we started, and 
restate some of our results as follows: 

When all the V OJ are zero, we have 

P U a; C l' ••• , Cn ) = lim 1 t-+oO CI X···XC n 

. I (e-iHtusfa)(x1"" ,xn )12 dX1 ••• d~ 

When not all the V OJ are zero, we have 

PUa;C 1 ,··· ,Cn) 

(99) 

= lim 1. t (1 I (e-iHtusfa)(~l' .,. ,xn )12 
T-+oo T 0 CIX"'XCn 

X dX1 ..• dXn .) dt. (100) 

We now know that the limits in (99) and (100) exist. 

Now e-iHteiHatfa converges strongly to H"6fa as t --> + co. 
We thus also have (use unitarity of e- iHt ) 

l' II -2iHt iHatf - -iHtU - f II - 0 
t!.Too e e a e a a - • (101) 

Because of (101),we can replace e-iHtu~fa by 
e-2'Hte'Hatfa in the integrands in (99) and (100) (see 
Lemma 3 of I). We call attention to this fact by stating 
it as 

Theorem 3: Suppose the Hamiltonian H of (2) des­
cribing n particles is such that the limits n ~ of (18) 
exist and the requirement of asymptotic completeness 
is satisfied. Let P (f 8; C l' •.• , Cn ) be the probability that 
if scattering is initiated in the state e-iHBtfa then, for 
i = 1, ... , n, particle i will be in the cone Ci at large 
positive times (provided it makes sense to speak of this 
probability). LetPUa;C 1 , •• . ,Cn ) denote the Cesaro 
limit for large positive times of the probability that for 
i = 1, ... ,n, particle i will be in cone Ci when scattering 
is initiated in the state e - ,Hat fa' Then 

(A) If all the static potentials V oj vanish, then it makes 
sense to speak of P(j a; C l' ... , Cn)' and 

P(jB;C!, ... , Cn) 

l' 1 I ( -2iHt iHatf )(- )1 2 
= t~~ C x ... xc e e a \A1""'Xn 

I n 

(102) 

(BL If the V OJ do not all vanish, it makes sense to speak 
of PU a; C l' •.. , Cn ) and 

PUB;C 1 ,·· .,Cn ) 

lim -1 T ( 
T-++oo T 10 IC

I 
X· •• X cn 

I ( -2iHt iHatf )(- )12d \ e e a \A1' ••• 'Xn Xl'" d"n) dt. (103) 

Theorem 3 is the analog of Theorem 1 of I, and Eqs. 
(102) and (103) are the analogs of Eq. (22) of I. Theo­
rem 3 represents a departure from the usual time­
dependent n-body scattering theory because the formulas 
for the probabilities in (102) and (103) no longer involve 
U"6. Of course, existence of U"6 was one of the hypotheses 

J. Math. Phys., Vol. 14, No.6, June 1973 

717 

used in deriving these formulas. However, since Us does 
not appear in (102) and (103) it is at least conceivable 
that these equations can be used to compute the prob­
ability in which we are interested in a case in which the 
Ml'Iller wave matrices Us do not exist. One sees easily 
enough that (102) and (103) give the correct probabilities 
in the case of constant potentials Vii' for which the 
Ml'Iller wave matrices trivially do not exist unless all 
Vij = O. This is only of academic interest, however. It 
is tempting to conjecture that (102) and (103) also give 
correct results when Coulomb potentials are involved, 
in analogy to Theorem 2 of I. After a considerable 
struggle, the present author is unable to ascertain 
whether or not this is true, and is willing to call it a 
hard problem. Let us now proceed to a brief discussion 
of the case when Coulomb potentials are involved. 

If some of the potentials occurring in the Hamiltonian H 
of (2) are Coulomb potentials, then the strong limits 
U~ of (18) no longer exist, and we must modify our treat­
ment. In discussing the necessary modifications, we 
shall rely heavily on the treatment of Coulomb n-body 
problems in Ref. 7. To indicate that there are now Coulomb 
potentials present, we write Hc instead of H. We proceed 
as follows: Just as in the case when there are no Coul­
omb potentials present, we make a list of all the ways 
in which various subsets of the n particles can be bound 
together. We denote the bound states by ¢ (Zl)' as be-al 
fore. Concerning the ¢a we make the technical assump-

I 
tion that they are" slightly better than square-integ-
rable"-what this means is that for each ¢ and for 
each internal coordinate zl, k = 1, ... ,rl , ~! the set Zl' 
there exists an E > 0 such that 

IlzlklE I¢al(zi, ... ,z?)1 2 dzi, ... ,dz;Z < co. (104) 

The domains D a are defined as before with P a denoting 
the projection on Da' In place of the usual operators 

-iH t 
e a we construct "distorted" operators U adt) des-
cribed in Ref. 7. Then under the hypothesis (104) and 
the hypothesis that each potential in Hc which is not a 
Coulomb potential can be written as the sum of a func­
tion in J:;2(tR.3 ) and a function in J:;p(R3), with 2 < p < 3, 
we can show that the strong limits 

(105) 

exist. 7•8 The operators U~c have all the properties (19) 
through (22) previously listed for Ml'Iller wave-mat­
rices. We denote by R~c the range of Ucic and by Rz; the 
orthogonal sum of all the R~c' We shall continue our 
discussion under the assumption that the limits in (105) 
do indeed exist and that the theory is asymptotically 
complete, i.e., that Rc = Rc and Re is the orthogonal 
complement of the subspace spanned by the true bound 
states of the theory. 

When Coulomb potentials are present, one can no longer 
"send in e-iHatfa", i.e., one can no longer specify a 
scattering state of the n-body system by requiring that 
at large negative times the n particles were in a state 
described by the wave-function e-iHatfa. Instead,we 
must "send in Uca(t)fa"-the operator Uca(t) is quite a 
bit like e- iHat , but is somewhat "distorted", as necessary 
to obtain convergence in (105). The ppd's determined by 

-iH t 
e a fa and Uca(t)fa agree asymptotically, so that to 
the casual observer a group of particles propagated by 
Uca (t) looks at large positive and negative times like a 
group of particles propagated by e- iHat . In any case, 
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we may now ask the question, Suppose that an n-body 
scattering experiment is initiated with the particles in a 
state described by the wave-function UC8 (t)f8 _ What is 
the probability P (j 8; C l' ..• , Cn) that for each j == 
1, ... ,n particle j will be in cone Cj at large positive 
times? The probability is of course given by 

P(j;C 1 ,··· ,Cn) 

== lim 1 ! (e-iHctn~8f8)(Xl"" ,xn )!2 
t-+oo C1 x .. , XCn 

X dxl' ... , dXn ' (106) 

provided the limit in (104) exists. Actually, the situation 
concerning the existence or nonexistence of this limit 
is exactly the same as in the short-range case, and 
Theorems 1 and 2 hold verbatim when Coulomb poten­
tials are present in the Hamiltonian, provided that any 
M~ller wave-matrices arising (in the hypotheses of 
the theorems, the definition of g ,,8' etc.) are interpreted 
as the operators in (105). The fact that Theorems 1 and 
2 hold when Coulomb potentials are present is analogous 
to the fact that it was possible to prove (29) in I. The 
reason that the theorems remain true is this: At large 
times e-iHctn~Bf8 can be replaced by .6"Uc,,(t)nc~ncllf8' 
At large positive times the ppd determined by 
Uc,,(t)nc~nc8f8 is the same as that determined by 

e-iH"t n~:n~8f Il' and "thus" the final result is the same 
as before. We put "thus" in quotation marks because all 
this must be proved. The essential point, however, is the 
one we have mentioned, and we omit the proofs, which 
are mostly a combination of the proof of (29) in I and 
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the proofs of (88) and (98) in the present paper. Un­
fortunately, as stated above, the author has not been 
able to prove that (102) and (103) give correct results 
in the case that Coulomb potentials are involved. 

In any case, we have derived a number of results which 
corroborate the usual interpretation of nonrelativistic 
scattering theory, giving a rigorous foundation to the 
geometrical picture of the scattering process. 
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Maximal foliations of extended Schwarzschild space 
Bruce L. Reinhart· 

Department of Mathematics, University of Maryland, College Park, Maryland 20742 
(Received 30 November 1972) 

Smooth families of spherically symmetric maximal surfaces which are spacelike except at r = 2m 
are explicitly constructed in Schwarzschild space. Such surfaces should be useful in the study of 
initial value problems. 

Recent work of York1 has indicated the usefulness of 
studying maximal spacelike foliations of relativity 
spaces. A foliation is a family of 3-surfaces filling the 
space, such that locally the surfaces arise as level sur­
faces of a function. A foliation is spacelike if each 3-
surface is spacelikej it is maximal if the trace of the 
second fundamental form of each surface is O. For 
background material on foliations, a good source is the 
expository paper of Haefliger. 2 In this paper, we shall 
find all spherically symmetric maximal foliations in 
extended Schwarz schild space. 3 It is proved that there 
are maximal foliations defined for all r > 0 which are 
spacelike except on the boundary of the black hole, 
r = 2 m. At r = 2 m, the 1-form defining the foliation 
enters the light cone. 

Let us adopt the notation of Kruskal. 3 Then we are seek­
ing a 1-form 

w = dt + h(r)dr 

such that the surfaces defined by w ::: 0 are maximal 
and spacelike. The unit normal vector to these sur­
faces is 

T ::: 1 [_ i. + B2h .i..] , 
,JB - B 3h 2 at or 

where 1 - B 2h 2 > 0 because the surfaces are spacelike. 

Also, an orthonormal frame tangent to the surfaces is 
given by 

(
-h i. +.i..), 

at or 

Using this basis to calculate the trace of the second 
fundamental form, we find that it vanishes if and only 
if 

h'=- 2r-m h+(r-2m)(2r-3m)h3• 
r(r - 2m) r3 

This is most easily solved by introducing the variable 
cp ::: Bh, which satisfies 

cp' ::: [(2r - 3m)/r(r - 2m)] (- cp + cp3). 

This equation has the solutions 

cp ::: 0, cp ::: ± [1 + Ar3 (r - 2m)]-1/2, 

where A is a constant. The values of r for which this 
is defined depend upon A. However, if 0 < A < 16/27m 4 , 

then cp is defined for all r > 0, attains a maximum value 
at r ::: 3m /2, and approaches 0 as r goes to infinity. If 
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FIG. I. t/> as a function of r for various values of A. The location of 
the vertical asymptote for A < 0 depends upon A. 

we now change to (v, u, 8, cp) coordinates, we find that w 
is a multiple of 

wo::: (u - cpv)dv + (cpu - v)du. 

As r approaches 2m, cp approaches 1. Hence, the form 

defines the same foliation, and approaches 

2-1/2 (dv + du) 

as r approaches 2m with u > v. It follows that the 
foliation can be defined on the whole space so as to be 
maximal and spacelike for r ;>' 2 m . 

Note added in proof: Surfaces of this type have been 
studied independently by Estabrook et al., Phys. Rev., 
in press. Their study focuses on computational ques­
tions, and includes a different derivation of the equa­
tions. 

*This research supported by the General Research Board of the 
University of Maryland. 

1J. W. York, Jr., Phys. Rev. LeU. 28, \082 (1972). 
2A. Haefliger, Ann. Scuola Norm. Sup. Pisa 16, 367 (1962). 
3M. Kruskal, Phys. Rev. 119, 1743 (\ 960). 
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The one-dimensional X-V model in inhomogeneous 
magnetic fields * 

K. M. Case and C. W. Lau 

The Rockefeller University. New York. New York 10021 
(Received 16 August 1972; final changes made 22 December 1972) 

The one-dimensional X - Y model in various kinds of inhomogeneous magnetic fields is analyzed. In 
each case we find the spectrum and eigenfunctions of the system, and study the equilibrium and 
relaxation behavior of the magnetization at any spin site. 

1. INTRODUCTION 

The X -Y model of a one-dimensional interacting spin-% 
system was first introduced by Lieb, Schultz, and Mattis 
in 1961. 1 Provided the interactions are restricted to 
nearest neighbors, and are under uniform external mag­
netic field, it is possible to obtain the spectrum and 
eigenfunctions of the system and even solve the Liou­
ville equation exactly. Consequently the equilibrium and 
nonequilibrium properties of the system can be studied. 2 

One interesting nonequilibrium property of the model 
that has been studied concerns its relaxation behavior. 
Suppose initially the system is in thermal equilibrium in 
the presence of a uniform magnetic field. At time t = 0, 
the field is switched off, and we observe the evolution of 
certain physical observables such as magnetization. For 
the isotropic X-Y model the total magnetization is a 
constant of motion and hence remains unchanged. For 
the anisotropic X-Y model it is found that the magnet­
ization per spin approaches a limiting value at t ~ 00, 

which, however, is not equal to its equilibrium value. To 
state this property concisely, one says that the system 
does not thermalize.3 

Abraham et al4 have studied the relaxation of the X-Y 
model when the initial magnetic field is localized to 
only one spin site. It is found in this case that the mag­
netization at any spin site and the spin correlation func­
tions approach their equilibrium values as t- 1 • 

In this paper we treat the isotropic X-Y model in var­
ious kinds of spatially inhomogeneous magnetic fields. 
With a wide class of fields it is possible to find the 
spectrum and eigenfunctions of the system, and hence 
study its equilibrium and nonequilibrium properties. In 
particular, we find that in the relaxation problem, if the 
initial magnetic field approaches zero sufficiently 
rapidly at infinity, the magnetization at any spin site 
relaxes to its equilibrium value asymptotically as t- 1 • 

In the absence of a magnetic field and in the limit of an 
infinite number of spins, the spectrum of the X - Y model 
consists of a bounded continuum. In an inhomogeneous 
magnetic field the nature of the spectrum in general 
changes. The cases of different magnetic fields con­
sidered here serve as explicit examples of how a con­
tinuous spectrum can be changed by external pertur­
bations. 

The plan of this paper is as follows. In Sec. 2 we per­
form the necessary transformations of variables to 
diagonalize the Hamiltonian, and to bring the eigenvalue 
equation to a form to be studied. In contrast to the 
usual procedure, the total number of spins is taken to be 
infinite right from the beginning. In Sec. 3 we consider 
the case of a magnetic field which is confined to a 
finite number of spin sites but is otherwise arbitrary. 
The eigenvalue equation is then cast into a form similar 
to that encountered in the linear theory of neutron 
transport. Consequently the mathematical apparatus of 
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singular eigenfunction solution5 can be taken over with 
very slight modifications. In Sec. 4, the results are 
generalized to the case of magnetic fields infinite in ex­
tent but approaching zero sufficiently rapidly at infinity. 
Then in the following three sections we consider the 
cases of a linearly increaSing field, a quadratically in­
creaSing field, and a spatially alternating field. In each 
of these cases we find the spectrum and eigenfunctions 
explicitly, and study the equilibrium and relaxation be­
haviors of the magnetization. The final section briefly 
summarizes the results. 

2. FORMULATION 

The Hamiltonian which describes the isotropic X-Y 
model with nearest neighbor interactions is given by 

00 

Jeo = :6 [S,:S':+l + S.?S~+d, (2.1) 
n=-oo 

where the Sn are i times the Pauli spin operators. This 
Hamiltonian commutes with :6:-

00 
S~, the total spin in 

z direction. 

Let h n be the magnetic field (in the z direction) at the 
nth spin site. The complete Hamiltonian is then 

(2.2) 
n=-oo 

The Hamiltonian Je can be brought to diagonal form by 
the following well-known transformations: 

1. Define spin-raiSing and lowering operators b~ 
b n , by 

It follows that 

(2.3) 

(2.4) 

(2.5) 

The b operators are neither Fermi nor Bose operators, 
but they can be expressed in terms of Fermi operators 
c'" ,c';; by the transformation 

n-1 

bn = exp(- rri:6 ctcl)cn, 
1=0 

(2.6) 

n-1 

b; = c; exp(rri:6 ctcl)' 
1=0 

(2.7) 

Under this transformation, 

(2.8) 

and 

(2.9) 

In terms of the c operators, the Hamiltonian Je becomes 

Copyright © 1973 by the American Institute of Physics 720 
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00 00 00 

X = t ~ [C~Cn+1 + C~+1cn] + ~ hnc~cn - t ~ h n • 
n=-oo n=-oo n:::-oo 

The constant term - t~::'=-oohn can be dropped by 
shifting the zero of the energy level. 

2. Spatial Fourier transformation. Define 

00 C 
1/1(0) = ~ __ n_eine 

n =-00 (21T) 1/2 

the inverse relation being 

C = t -~e-ine1/l(0). 
n -" (21T)1/2 

- 1T :s 0 :s 1T, 

(2.10) 

(2. 11) 

(2. 12) 

The 1/1(0) are Fermi operators satisfying the anticom­
mutation relations 

{1/I+(0), 1/I(0')} = 15(0 - 0'), 

{1/I(0),1/I(0')} = {1/I+(e),1/I+(e')} = o. (2.13) 

Let F( e) be the Fourier transform of the magnetic field, 

00 h 
F(e) = ~ _n einS. 

n =-00 21T 

We have, since h n is real, 

(2. 14) 

F*(e) = F(- e). (2.15) 

In this representation that Hamiltonian X becomes 

X = J" dO cose 1/I+(e)1/I(e) 
-" 

+ J" deJ" dO'1/I+(e)F(e - e')1/I(e'). (2.16) 
-1T -1T 

To diagonalize X, consider the eigenvalue problem 

cosow>.,(e) + J" de'F(e - O')w>.,(e') = E>.,w>.,(O), (2.17) 
-" 

where w>.,(e) are c-numbers, not operators. Suppose a 
complete orthonormal set of eigenfunctions {w>.,(e)} can 
be found. Expand 

1/I(e) = J dAa>.,w>.,(e), 

1/I+(e) = J dAatw:(O), 
(2. 18) 

where the integral is understood to be integration over 
continuum states and summation over discrete states. 
Using the orthonormality of w},,(O), one can show that the 
coefficients a}" are Fermi operators, and the Hamiltonian 
X can be brought to the diagonal form 

(2.19) 

In the next few sections we will solve the eigenvalue 
problem (2. 17) for different hn and hence different F. 

Before proceeding, we express the magnetization in 
terms of the eigenfunctions u},,(O). Let m n [= S~] be the 
magnetization of the nth spin, 

(2.20) 

In the relaxation problem the Hamiltonian is given by 
(2.16) for time t:s 0, and by (2.1) for t> O. Hence if 
( •.• ) denotes a thermal average in the presence of the 
magnetic field, and t 2: 0, then 
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_ ( i:ICot + -iJCot) _ .!. - e CnCn e 2 

J" de' inS' 
= -" (21T)1/2

e 

X J" ~e-ine(eiJCot1/l+(O')1/I(e)e-iJCot) - t. 
-" (21T)1/2 

(2.21) 

The Hamiltonian Xo is just the first term on the right­
hand side of (2.16). Using the anticommutation rela­
tions (2. 13), we have 

eiJCot1/l+(e')1/I(0)e-i,lCot = e-it(cose'-cose)1/I+(e')1/I(0). (2.22) 

To calculate (1/I+(e')1/I(0», we use the eigenfunction ex­
panSion (2.18). Since a}" are Fermi operators, 

(2.23) 

where I5(A' - A) denotes a Dirac delta-function if A' and 
A parametrize continuum states, and a Kronecker delta 
if both parametrize discrete states. Substituting (2.22), 
(2. 18), and (2.23) into (2.21), we obtain 

(mn(t» = (cn+(l)cn(t» - t 

= JdA--
1

- J" ~ 
1 + e BE>., -" (21T)1/2 

xi: d01/2ein(e'-eH(cosS'-COSS)tw:w)w>.,(O) - t. 
(21T) (2.24) 

Setting t = 0 gives the expreSSion for the equilibrium 
magnetization of the nth spin in the presence of the 
external magnetic field. 

Finally, one Simple property of the magnetization should 
be noted. The Hamiltonian Xo in (2.1) does not dis­
tinguish between the positive and negative z axis. Write 
(mn(t) as 

Tr[ e - BJC e iJCot S:e -iXot] 

Tr[e -BJC] 
(2.25) 

Let (mn(l»(_) be the magnetization obtained with all the 
h n in (2.2) replaced by - hn' i.e., with an overall Sign 
change in the magnetic field. It can easily be seen from 
(2.25) that 

(2.26) 

This simple relation is sometimes useful in calculations 
related to the magnetization. 

3. MAGNETIC FIELD ON FINITE NUMBER OF SITES 

A. General properties of the eigenvalue equation (2.17) 

Before solving the eigenvalue equation (2. 17) for a given 
magnetic field, we note some of its general properties 
[which can be proved in the usual way by using (2.15)]: 

(i) If an eigenfunction is square-integrable, its 
corresponding eigenvalue is real. The eigenfunctions 
that are not square-integrable will be shown to corres­
pond to continuum modes with eigenvalues on the real 
line between - 1 and + 1. Hence all eigenvalues of 
(2. 17) are real. 
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(ii) Eigenfunctions corresponding to different eigen­
values are orthogonal to each other. 

(iii) There is a degeneracy: if w,,(B) is a solution of 
(2. 17), then w:(- B) is also a solution with the same 
eigenvalue. For simplicity we often consider magnetic 
fields which are symmetric with respect to the zeroth 
spin, Le., hn = h_n • Then F(B) is real and even in B, by 
(2.15), and the eigenfunctions w,,(B) can be taken to be 
real functions. Because of the degeneracy we form 
linear combinations and classify the eigenfunctions as 
either even or odd in B. 

B. Eigenvalue equation with the magnetic field on finite 
number of sites 

We assume hn = 0 for I n I > N, and, for Simplicity, hn = 
h_ n • The function F(B) then becomes 

h N h 
F(B) = ~ + 6 2 cosnB 

21T n= 1 1T 

N h 
= 6 n cosnB. 

n=O (1 + li o•n)1T 
(3. 1) 

The eigenvalue equation (2.17) becomes 

N h 11" 

cosBwA(B) + 6 n i dB' 
n=O (1 + li o.n )1T -11" 

x cos[n(6 - B')]w,,(B') = E"w,,(B). (3.2) 

Let u,,(6) and u,,(B) denote the even and odd eigenfunc­
tions respectively. Expanding cos[ n( B - B')] = 
cosn6 cosnB' + sinnB sinnB', we have separate equations 
for the two types of eigenfunctions: 

N 

cosBu,,(B) + 6 
n=O 

h I 11" ---'-'-- cosnB dB' 
(1 + li O•n )1T -" 

x cosnB'u,,(B') = E"u,,(B), 

N h n i" cosBu,,(B) + 6 sinnB dB' 
n=O (1 + li O•n )1T -11" 

(3.3) 

x sinnB'u,,(B') = E,,,il,,(B). (3.4) 

These equations are quite similar to the eigenvalue 
equation that arises in linear neutron transport theory.5 
To solve these equations we therefore follow closely the 
method used in the latter case. We shall treat (3.3) in 
detail and only quote the results for (3.4), since the pro­
cedures are entirely the same in the two cases. 

Let 

(3.5) 

be the Fourier coefficients of the eigenfunctions. Multi­
plying (3.3) throughout by coslB and integrating over B, 
we obtain the following recurrence relations for the co­
efficients: 

(3.6) 

Clearly any Sl (E,,) is proportional to so(E,,), the pro­
portionality factor being a polynomial of order 1 in E. 
The first few coefficients are given below: 
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s2(E,,) = [2(E" - h1)(E" - ho) - l]so(E,,), 

s3(E,,) = [4(E" - h2)(E" - h1)(E" - ho) 

- 2(E" - h2) - (E" - ho)]so(E,,). 

It can be seen that u,,(B) is a nontrivial solution of (3.3) 

only if so(E,,) = 1: d8u,,(B) is nonvanishing. In this case 
we can set 

(3.7) 

since u,,(8) is determined only up to a multiplicative 
constant. 

The eigenvalue equation (3.3) can be written as 

(3.8) 

where 

C. Discrete modes 

Square-integrable solutions of (3.8) are discrete eigen­
functions. We use i instead of i\ to parametrize these 
eigenfunctions and eigenvalues. Clearly either E j lies 
outside the interval [- 1, + 1] or, if it lies inside the 
interval,M(E j ,Ej ) = O. In either case, 

M(cos8,Ej) 
ui(B)=---~ 

cos8 - Ei 
(3.10) 

The eigenvalues Ei are determined by the condition (3. 7): 

11" M(cosB,Ei ) 1-I d8---' 
- -11" cosB -Ej 

Introduce the dispersion function 

A(z) = 1 -i" d8M(cos8,z) 
-11" cos8 - z 

where 

Q (z) = i" dB cosnB • 
n -11" cos8 _ z 

(3. 11) 

(3.12) 

(3. 13) 

(3.14) 

Every eigenvalue E; is then a zero of A(z). Conversely, 
if Zj is a zero of A(z), Le., A(zj) = 0, we can use the re­
currence relation (3.6) to construct a set of numbers 
{so(Zj), sl(Zi)' s2(Zj),"'}, where so(Zj) is taken to be 
unity. Using (3.9) and (3.10), we then construct a non­
trivial eigenfunction uj(B) with eigenvalue Zj' Hence the 
discrete eigenvalues E j are in one-to-one correspon­
dence with the zeros of A(z). This is an important 
observation to which we shall refer later. As an imme­
diate consequence, the zeros of A(z) must all lie on the 
real axis. 

The function A (z) is discontinuous across the cut from 
- 1 to + 1. Let z ~ II ± iE, where IIE[ - 1, + 1], and denote 
the boundary values of the dispersion function by A±(II). 
It follows from (3. 12) that 

(3.15) 
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.!.[A+(v) - A-(v)] = _ 21Ti M(v, v) 
2 (1 _ v2)1t'2 ' 

(3.16) 

where P denotes the Cauchy principal value. 

D. Continuum modes 

Suppose EA lies in the interval [- 1, + 1]. For conveni­
ence set 

EA = cos;\., 0 ::=;: ;\. ::=;: 1T. (3.17) 

The general solution of (3.8) is a distribution, 

UA(O) = P M(cosO, cos;\.) + r (;\,)[6(0 - ;\.) + 6(0 + ;\')], 
cosO - cos;\. 

(3.18) 
where the function r(;\.) is determined by (3.7): 

r(;\.) = ! (1 - P J" dO M(cosO, cos;\.»), 
-" cosO - cos;\. 

(3.19) 

or, in terms of the dispersion function, 

r(;\.} = 1/4[N(cos;\.} + k(cos;\.}], (3.20) 

where (3. 15) has been used. Clearly r(;\.} can always be 
chosen so that (3. 20) is satisfied. Hence any EA on the 
real interval [- 1, + 1] is an acceptable eigenvalue; the 
corresponding eigenfunction is given by (3.18) and 
(3.20). 

E. Normalization integrals 

The eigenfunctions uj(O) and uA(O) are not properly 
normalized. Define the normalization integrals N j and 
NA by 

.C dO[uj (0)]2 = N; (3.21) 

and 

(3.22) 

The properly normalized eigenfunctions are Ni l/2u;(O) 
and Ni..1/2uA(0). Some care must be exercised in de­
fining the normalization integral NA for the continuum 
eigenfunctions. We wish to use the normalization 
integrals to evaluate the coefficients in the expanSion of 
a functionf(O) in terms of uA(O), 

f(O) = 1" d;\.A(;\')uA(O). o (3.23) 

Multiplying by uA,(O) and integrating over 0, we find that 

(3.24) 

In analogy with the usual case, the left-hand side of 
(3.24) is defined to be N}..' A(;\.'). Thus, 

1 1" 1" NA = -- dOu A, (0) d;\.A(;\')uA(O). 
A(;\.') -" 0 

(3.25) 

The important point to note is that the order of inte­
gration in this double integral matters, because of the 
singular nature of the functions uA(O). To interchange 
the order of integration, one needs to use the Poincare­
Bertrand formula5 

1"dOP--~--1"dA'P 1 g{O,A') 
o cosO - COSA 0 COSA'- cosO 
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1T2 = - --g(A,A) 
sin2A 

+ 1" dA'1" dOP 1 P 1 g(O,A'), 
o 0 cosO - COSA COSA' - cosO 

(3.26) 
where g(O, A') is an arbitrary function. To ensure that 
the quantity NA defined by (3.25) agrees with that de­
fined by (3.22), the evaluation of the integral in (3.22) 
has to be supplemented by the following recipe regarding 
the product of two principal values: 

P 1 P 1 
cosO - CosA cosO - COSA' 

_ 1 [p 1 
- cosO - COSA' cosO - COsA 

P 1 ] 
cosO - COsA' 

1T2 , 
- --6(0 - ;\.)6(0 -;\. ). 

Sin2A 
(3.27) 

The recipe is a symbolic form of applying the POincare­
Bertrand formula. 

Evaluations of the normalization integrals are given in 
the Appendix. We state the results here. 

ilA(z) I N.=-M(E.,E.)-- , 
, "ilz 

z=E j 

(3.28) 

NA = !A+(COSA)A-(cOsA). (3.29) 

Two properties of the dispersion function A(z) follow 
from these results: 

(i) All zeros of A(z) lie on the real axis outside the 
interval [- 1, + 1]. 

Proof: Equation (3.12) shows that if A(Ej) = 0, where 
E j€[- 1, + 1], then M(EjlE;) = O. It follows from (3.28), 

" then, that N; = i" dO[u;(0)]2 = O. However, we have seen 

that every zero of A(z) corresponds to a discrete eigen­
state with a [nontrivial] square-integrable eigenfunction; 

" i.e.,1 dO[u jUi)]2 '" O. This contradiction shows that 
-" 

A(z) cannot have a zero within the interval [- 1, + 1]. 
PhYSically this property means that the discrete and 
continuum spectra do not overlap. 

(ii) All zeros of A(z) are Simple. 

Proof: If A(z) has a multiple zero at Ej' then 
ilA(z)/ilz Iz=Ej = O. The same argument as above shows 

that this leads to a contradiction. 

In addition to the above two properties, we have the 
following: 

(iii) All zeros of A(z) lie on a finite segment of the 
real axis. 

Proof: We examine the behavior of A(z) [as given by 
(3.13)] at Iz I ~ 00. From the recurrence relation (3.6) 
we have 

s (z) --;::. 2n- 1z n • 
n Iz 1-+00 

(3.30) 

From (3.14) we have 

Q (z) __ ;::. __ 1T_. 
n Izl-+oo 2nz n+l 

(3.31) 
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Therefore, 

(3.32) 

This shows that A(oo) = 1. Hence the zeros of A(z) must 
lie on a finite segment of the real axis. 

F. Completeness 

The eigenfunctions we have constructed form a com­
plete set (for even functions). The proof of this im­
portant property follows closely the procedure used in 
the case of the neutron transport equation; instead of 
repeating the procedure, we refer the reader to Ref. 5 
for details. Here we briefly sketch what the proof 
involves. 

Let/(B) be any given function,6 even in B. Because of 
evenness it is sufficient to consider only positive B. We 
wish to prove that it is always possible to write /(B) in 
the form 

K 11 
/(B) = L;aiui(B) + 1 dAa(A)uA(B), (3.33) 

i=l 0 

where the a are expansion coefficients to be determined, 
and K is the total number of discrete modes. Set 

K 

/'(B) = /(B) - L; aiu i (B). (3.34) 
i=l 

Using the explicit expression (3.18) for uA(B), (3. 33) can 
be written as 

/'(B) = P 111 dAa(A) M(cosB, COSA) 
o cosB - COSA 

+ t[ A+(cosB) + A-(cosB)]a(B). (3.35) 

If /,(B) is regarded as a known function, (3. 35) is a 
singular integral equation for the unknown function a(A). 
From the theory of singular integral equations, a solu­
tion exists only if the function/,(B) satisfies K sub­
sidiary conditions [which is connected with the existence 
of K simple zeros in the dispersion function A(z)]. 
These K conditions suffice to determine the K discrete 
coefficients a i • Consequently the expansion (3.33) 
exists. Furthermore, the coefficients a i and a(A) can be 
determined from the orthonormality of the eigenfunctions. 

G. Odd eigenfunctions 

The solution of (3.4) is entirely similar to (3.3), and we 
quote the results here. 

The Fourier coefficients of the odd eigenfunctions uA(B), 

satisfy the recurrence relation 

Sn+1(EA) = 2(EA - hn)"sn(EA) - 5n _1(E), 

50(EA) = o. 

(3.36) 

n ~ 1, 

(3.37) 

It can be seen that every coefficient sn is proportional 
to 51' the proportionality factor being a polynomial of 
order n - 1 in E. As before, we set 

(3.38) 

Define 

(3.39) 
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and 

A(z) = 1- 111 dB SinBM(cOSB,z) 
-11 cosB - z 

(3.40) 

(3.41) 

where 

Qn(z) = 111 dB sinB sinnB . 
-11 cosB - z 

(3.42) 

As before, there exist in general both discrete and con­
tinuum modes. The discrete eigenvalues are the zeros 
of A(z), these zeros having the same properties as in 
the even case. The continuum eigenvalues consist of the 
real interval [- 1, + 1]. The corresponding eigen­
functions are 

_ M(cosB,E) 
ui(B) = , 

cosB -E; 
(3.43) 

U (B) = P M(cosB, COsA) + _1_[A+(cosA) + A:-(COSA)] 
A cosO - COsA 4 sillA 

x [6(B - A) - 6(B + A)], 

and the normalization integrals 

J 11 dB[u; (B)]2 = Ni -11 
__ MeE; ,E;) tlA<.:2.1 
- (I-El)1I2 (lz z=E' , 

t dBuA(B)u A, (B) = NA6(A - A'), -11 
NA = A+ (COSA)A- (COsA) . 

2 sin2 A 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

These discrete and continuum eigenfunctions together 
form a complete set (for odd functions). 

H. An example 

Only in very Simple cases can one calculate the dis­
persion functions explicitly and hence obtain more de­
tailed information about the distribution of discrete 
eigenvalues. Here we consider one such case, for which 
the magnetic field is 

= f h > 0, I n I ::5 N, 

hn=to Inl>N. (3.48) 

The recurrence relations for the Fourier coefficients 
sn(z) and 5n(Z) can be solved explicitly in this case. Let 
0( 1 and 0( 2 be the roots of the quadratic equation 

0(2 - 2zO( + 1 = 0, 

that is, 

0(1,2 = Z ± ';Z2 - 1)112 

(3.49) 

(3.50) 

For z outside the real interval [- 1, + 1],0( 1 and 0( 2 

have different moduli, their product always being unity. 
We always take 0( 1 to be the root with modulus ~ 1, and 
0( 2 the root with modulus::5 1. 

Let 

z'=z-h. (3.51) 
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The solutions of the recurrence relations (3.6) and 
(3.37), with the initial conditions (3.7) and (3.38), are 

(3.52) 

and 

Sn(z) = a{n + a;n, n:5 N+ 1, (3.53) 

a~ - a; 

where a~ 2 are defined by (3.50), with z replaced by Z'. 
The right-hand sides of (3.52) and (3.53) are just 
Tchebichef polynomials of the first and second kinds, 
respectively, in the variable z I: 

Sn(Z) = Tn(z/), n:5 N+ 1, 

sn(z) = U,,_l (z '), n:5 N + 1. 

(3.54) 

(3.55) 

For n > N + 1, the coefficients have different form, but 
they are not needed to evaluate the dispersion functions. 

The integrals Qn(z) and Qn(z) as defined by (3.14) and 
(3.42) can be evaluated to give 

n> O. 

(3.56) 

(3.57) 

Substitute (3.52), (3. 53), (3.56), and (3.57) into (3.13) 
and (3.41) for the dispersion functions. The sums can be 
carried out and we find that 

A(z) = [QN(z)/21f][a 2 TN(z') - TN1-1(Z/)], 

A(z) = [QN(z)/21f][a 2UN_1(z/) - UN(z/)]. 

(3.58) 

(3.59) 

Hence the zeros of A(z) and A(z) are determined, re­
spectively, by the two equations 

One can show that 

TN+1~ > 1 
TN(Z') , 

forz ' > 1, 

TN +1(Z/) 
< - 1 for z' < - 1. 

TN(Z/) , 

(3.60) 

(3.61) 

(3.62) 

The same relations hold for the Tchebichef polynomial 
of the second kind. Since a 2 is always less than one in 
magnitude, we conclude that (3.60) and (3.61) have 
solutions only for 

- 1 < z' < + 1 

or 

- 1 + h < z < 1 + h. (3.63) 

Recall that the discrete eigenvalues cannot lie within the 
continuum [- 1, + 1]. Therefore, if - 1 + h < 1 or h < 2, 
(3.63) can be replaced by 

1 < z < 1 + h. (3.64) 

Equation (3.63) or (3.64) gives the bounds of the dis­
crete eigenvalues. Their exact values can be found only 
by numerically solving (3.60) and (3.61). 
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I. Relaxation of magnetization 

Returning to the case of a general magnetic field [finite 
in extent], the eigenfunction solutions will now be used to 
study the relaxation of the magnetization as formulated 
at the end of Sec. 2. We recall that in the relaxation 
problem the system is initially in thermal equilibrium 
in the presence of the magnetic field. At t = 0, the field 
is switched off, and we observe the evolution of the 
magnetization of the nth spin. The time-dependent mag­
netization, as given by (2.24), has four contributions, due 
to the even-discrete modes, even-continuum modes, odd­
discrete modes, and odd-continuum modes, respectively. 

Consider the even modes. Equation (2.24) gives 

B(E.) 11 de 12 
(c+(t)C (t) = I; --' I J __ ein6-icoS6.tu.(e) 

n n even i Ni -11 (21T)1/2 ' 

11 B (cos~) 1 1f de 12 + 1. d~ J ___ e ine - i cosa·t u (e) 
o N>.. -" (21T)1/2 >.., 

(3.65) 
where 

B(x) = 1/( 1 + e Bx). (3.66) 

Clearly, as t -7 00, the contributions of the discrete 
modes are all of order t- 1 • The asymptotic time depen­
dence of the continuum part, however, cannot be seen 
directly because of the Singular nature of the eigen­
functions u>..(8). Some manipulations are needed. 

Define 

I(t,n,z) == J" ~eine-icose.tM (cose,z) , (3.67) 
-11 (21T)1/2 cose - z 

F(z) == - M(z, z)A(z). (3.68) 

The discrete normalization integral is given by 

N. = - M(E. E.) oA(z) 1 

' " 'oA _ z-E i 

= of(z) 1 

oz z=E. , 
(3.69) 

where we have used A(Ei) = O. The contributions of the 
discrete modes can be expressed as follOWS: 

B(E.) 1 11 de 2 L) --' J ___ e ine - i cose.tu.(e)1 
i Ni -1T (21T)112 ' 

B(E i ) 1 = L) )1 l(t, n,Ei)I(- t, n,Ei ) 
i of(z oz z=E. , 
1 B(z) 

=-. Ie dz--l(t,n,z)l(-t,n,z), 
21ft 2 F(z) 

(3.70) 

where C 2 is a contour around the discrete eigenvalues, 
as shown in Fig. 1. The contribution of the continuum 
modes is Simply related to the contour integral in (3.70), 
but now with the contour C1 surrounJing the cut (Fig. 1): 

t d~ B(COSA) r ~ lein&-icose.t u (e) 12 
o NA. -11 (211-)L2 A 

= ~ Ie dz B(CZ)) I(t, n, z)I(- t, n, z) 
21Tt 1 F z 

1 1. 11 

+ - d~B(cOSA) cos2 nA. 
1T 0 

(3.71) 
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The validity of (3.71) can be checked by deforming the 
contour integral into integration above and below the cut, 
and using the explicit expression (3.18), (3.20) for the 
eigenfunctions u),.(e). Equation (3.65) then becomes 

(C;(t)C,,(t))even == ~ j dz B(z)I(t,n,z)I(_ t,n,z) 
21Tt C F(z) 

1 1" + If 0 dAB (cosA) cos2n~ , 

where C is the sum of the two contours C 1 and C2 • 

Similarly for the odd modes, we have the result 

(C;(t)Cn(t»Odd =~ jdz !!«z) I(t,n,z)I(- t,n,z) 
21Tt C F z) 

11" + - dAB (cosA) sin2nA, 
1T 0 

where 

I-It ) - J~ ~ in9-; cos9·t M (cose,z) \ ,n,z - e , 
-~ (21T) 1/2 cose - z 

F(z) == - M(z,z) X(z). 
(1-z2)1/2 

Using the fact that 

1 J" 1 J" - dAB (cosA) cos2nA + - dAB (cosA) sin2 nA 
1T 0 1T 0 

1 In == - dAB (cosA) = 1/2, 
'IT 0 

we finally have 

1 
-2 

= _1_ J dZB(z) 
21Ti C 

(3.72) 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

x I(t,n,z)I(-t,n,z) + J(t,n,z)J(-t,n,z) (3.77) 
F(z) F(z) 

As too-) Cl), the integrand in (3.77) is of order t -1. Hence 
we conclude that the magnetization approaches zero as 
t- 1 for large t. 

4. MAGNETIC FIELD ON INFINITE NUMBER OF SITES 

The treatment and results in the last section are gener­
alizable to the case of a magnetic field which is infinite 
in extent and satisfies 

3"'/f3 

"';/(3 
__ -t+_~C, 

-"'Vf3 
-3"';/(3 

FIG. 1. Contours for evaluating integrals for relaxation of the 
magnetization. 
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(4.1) 

Such a magnetic field poses questions of convergence of 
the dispersion function A(z) and the M function. Let us 
first consider the dispersion function given by (3.13), 

00 h 
A(z) == 1 + E " sn(z)Qn(z). 

n=O (1 + liO)1T 
(4.2) 

The coefficients sn(z) satisfy the recurrence relation 
(3.6), which for n -) Cl) becomes approximately 

(4.3) 

The characteristic equation of this recurrence relation 
is just (3.49). Therefore, 

(4.4) 

where A(z) and B(z) are some functions of z, indepen­
dent of n, and a 1.2 are the roots [Eq. (3. 50)] of the 
characteristic equation. We recall that a 1a 2 == 1, and 
that a 1 is taken to be the root with magnitude greater 
than or equal to one. 

The quantity Qn(z) is given by (3.56), 

(4.5) 

Therefore, 

lim I Qn+1 (z)sn+1 (z) I _ \1, if A(z) ;0< 0, 
n->oo Qn(z)sn(z) -)/a/ 2 <1, ifA(z)=O. (4.6) 

In either case, since (4.1) is assumed to hold, the infinite 
sum in A(z) converges uniformly in the z-plane cut along 
the real interval [- 1, + 1]. Hence A(z) is an analytic 
function in the cut plane. As (3.32) Shows, A(Cl) = 1. 

The functionA(z) in (4.4) is related to A(z). To show 
this we use the relation 

/ h 
1 + E n sn(z)Qn(z) 

n=O (1 + 60•n )1T 

Q/(z) = --[a2s/(z) - SI+l(z)], (4.7) 
21T 

which can be proved by using the recurrence relation 
(3.6) for sn(z) and (4.5) for Q,,(z). Let [ be large enough 
so that 

From (4.4) it follows that 

a 2s/(z) - SI+l(z) == A(z)aHa 2 - all, 100-) Cl) (4.9) 

or 
Q/(z) 
--[a2s/(z) - s/+l(z)] == 2A(z), [00-) Cl). 

21T 
(4. 10) 

Comparing (4.8) and (4.10) gives 

A(z) == tA(z), (4.11) 

so that 

(4.12) 
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This is a satisfying result, because it shows that at z = 
Ei' the discrete eigenvalues or zeros of A(z), sleEt) ~ 0 
as 1 ~ <Xl, as is required of the Fourier coefficient of an 
integrable function. 

The M -function is defined by the generalization of (3.9): 

00 h 
M (cose,z) = - ~ n cosne· sn(z), 

noO (1 + Ii O•n )7T 
(4. 13) 

This infinite sum converges for Z E [- 1, + 1], since 
(4.4) and (3.50) show that 

Sn(cosA) = A (cosA)e inA. + B(cosA)e- inA , n -4 <Xl. (4.14) 

At the discrete eigenvalues z = Ei' the convergence is 
guaranteed by (4.12). 

We need also to examine M(Ei ,Ei ), which is related to 
the discrete normalization integral. Let Tn (z) be the 
Tchebichef polynomial of the first kind, 

Tn(z) = Ha~ + a~] --;> 1a~, z 4: [- 1, + 1]. (4.15) 
n-+oo 

It follows from (4.12) and (4.15) that 

T (E .)8 (E.) _ ~ B(E .). (4.16) 
n , n t n~ 00 ' 

Consequently the infinite sum 

(4.17) 

converges. 

We conclude, therefore, that the eigenfunction solutions 
in Sec. 3 also apply to the case of a magnetic field 
infinite in extent and satisfying (4.1). There are a 
finite number of discrete modes in addition to the con­
tinuum modes. The eigenfunctions are given by the 
same equations (3.10), (3. 18), and (3.20), where M and A 
are now defined by infinite sums. These eigenfunctions 
form a complete set (for even functions), and their 
normalization integrals are given by (3.28) and (3.29). 
Actually the derivation of the normalization integrals in 
the Appendix requires modification, since now M (cose, z) 
does not exist for all z. However, instead of carrying out 
the modified derivation, we merely note that, since A(z) 
is analytiC and M(E;, E i ) converges, the final results 
(3.28) and (3.29) can be obtained by taking appropriate 
limits. 

These conclusions, of course, also apply to the odd 
eigenfunctions. 

In the relaxation problem, a difficulty is encountered be­
cause of the fact that the functionM(cose,EA) cannot now 
be extended to include complex values of its arguments. 
The magnetization cannot be written in the form of 
(3.77); instead we have 

(m (I»> = _1_11 dp. B(p.) (I-(t, n, 1-1')/-(- t, n, p.) + [-(t, n, J.I.)[-(- t, n, Il) _ I+(t, n, J.I.)1 +(- t, n, IJ.) _ [+(t, n, IJ.)T+(- t, n, IJ.») 
n 27Ti -1 F-(IJ.) F-(IJ.) F+(IJ.) F +(IJ.) 

'" I(t,n,Ei)I(-t,n,E;) '" _ l(t,n,E;)I(-t,n,E;) 
+ L..J B(Ei ) + L..J B(E;) , (4.18) 

i ~ ; ~ 

where, for example, I±(t, n, J.I.) are the boundary values of 
the function defined in (3.67). 

To study the long-time behavior of the magnetization, 
there seems to be no other way than a direct asymptotic 
evaluation of the expression (4.18). We will not present 
the rather lengthy calculations here, but only make one 
technical remark concerning the asymptotic evaluation 
of the integral I±(t, n, IJ.), which is given by 

J±(t,n,ll) = 1" ~e;ne-;tcosfJ M(coSe,ll) • 
-1r (27T) 11'2 cose - Il =F iE 

(4.19) 

The factor cit cose has saddle pOints at e = 0, 7T. For Il 
"close" to ± 1, we therefore have singularities "close" 
to the saddle pOints. Consequently the usual saddle­
point evaluation of the integral (4.19) must be modified 
to take into account these Singularities. 

The lengthy calculations produce the expected result 

(mn(t» = O(l/t), t ~ <Xl. (4.20) 

This result is expected because of the fact that in a 
magnetic field infinite in extent but satisfying (4.1), the 
spectrum of the system is essentially the same as in a 
magnetic field finite in extent. That is, there are a 
finite number of discrete eigenvalues in addition to the 
continuum. Consequently the relaxation behavior of the 
magnetization in the two cases should be the same. 

5. LINEARLY INCREASING FIELD 

The magnetic fields considered in the last two sections 
do not induce much change in the spectrum of the sys­
tem: a finite number of discrete eigenvalues appear in 
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addition to the original continuum. If the magnetic field 
h n is a polynomial of order P in n, the eigenvalue equa­
tion (2. 17) in general becomes a differential equation of 
order p, and the spectrum is radically changed. The 
simplest case, that of a linearly increasing field, has 
recently been discussed by Smith.7 

For completeness we here briefly summarize the per­
tinent results. 

(1) The spectrum is purely discrete and extends 
from - <Xl to + <Xl. The eigenvalues are 

1 = 0, ± 1, ± 2, .• " 

and the normalized eigenfunctions are 

(5.1) 

(5.2) 

(2) The equilibrium magnetization under the applied 
field is given by 

00 

(mn(o» = L; B(lh)[J1+ n (h- 1)]2 - ~, 
1=-00 

where 

B(x) = 1/(1 + e aX) 

and I n is the Bessel function of order n. 

For h > 0, this shows that 

(mn(O» ~ 1/2, n large and positive, 

~ - 1/2, n large and negative, 

as would be expected physically. 

(5.3) 

(5.4) 

(5.5) 
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At zero temperature the expression (5.3) simplifies to 

n-1 

(mn (O»i3 .... oo = HJJ(h- 1 ) + Jn2(h- 1 )] + .6 Jl(h- 1 ). (5.6) 
z=1 

(3) In the relaxation problem, the time-dependent 
magnetization (mn(t» is given by 

00 

(m,,(t» = .6 B(lh)IFz+n (h- 1,t)12_t, 
z=-oo 

where 

F{h-l, t) = {If de e-it costH ilk) sin9+ize • -If 'TT 

In particular, 

(5.7) 

(5.8) 

(5.9) 

and hence the total magnetization is always zero and 

For large t, we have 

00 

(m,,(t» ~ ~ L.; <B t ~ 00, 
'TTt Z-oo I' 

(5.10) 

where 

<B z = B[(l- 1)h]- B(lh). 

At zero temperature this simplifies to 

(m n (t)13=oo ~ ~, t ~ 00. 
'TTt 

(5.11) 

6. QUADRATICALLY INCREASING FIELD 

The case of a quadratic field leads to a well-known 
equation for the eigenvalue problem. With h n = n2h, 
(2.14) gives 

00 n2 
F(e) = h .6 _e ine 

n=-oo 2'TT 

= _ h 3 2 ~ ei"e 
a e n=-oo 2'TT 

= _ hI5"(e). 

18 

8 

2 

--~--~~--~~--~----l o 15 h 

~€ 
h 0 

(6.1) 

FIG. 2. Dependence of the eigenvalues on the magnetic field, taken from 
Ref. 6, p. 40, Fig. 8(A). 
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Therefore the eigenvalue equation (2.17) becomes a 
second-order differential equation 

d2wz(e) (Ez cose) -- + - - -- w (e) = 0 
de 2 h hZ' 

(6.2) 

where again the parameter A is replaced by l. The solu­
tions Wz (e) must in addition satisfy the periodic condition 

(6.3) 

Equation (6.2) is just Mathieu's equation, which has been 
well investigated. Here we summarize the relevant pro­
perties of the solutions subject to the condition (6.3)8: 

1. The spectrum is discrete and bounded from below. 
The eigenvalue Ez is a continuous and single-valued 
function of h. 

2. The solutions are either even or odd in e. Let 

{~l} be eigenvalues of the {'b'deg} eigensolutions. For 

finite values of h, Ez '" Ez; as h ~ 00, both Ez and €z approach 
hl2 , where 1 is an integer, and the even and odd eigen­
functions approach multiples of cosle and sinle, respec­
tively. A graph of the eigenvalues as a function of h is 
shown in Fig. 2. 

3. The eigenfunctions are in one-to-one corres­
pondence with the trigonometric functions cosle and 
sinle, and, analogous to the latter functions, form a com­
plete set. Letuz(e) andul(e) denote the even and odd 
normalized eigenfunctions, respectively. We follow 
standard notations and write 

u z(8) = 'TT- 1
/2 ce2z (e/2)'l ' 

uz(e) = 'TT- 1/2 se2z (e/2) 
1 = 0,1,2,"', (6.4) 

where {~::;~~~} is the Mathieu function which reduces 

to a multiple of {~~~;:} as h ~ 00. The function seo(e/2), 

and hence uo(e), is identically zero. 

In terms of the eigenfunctions, the equilibrium magnetiz­
ation becomes [(2.24) with t = 0] 

(mn(O» = - t + ~ (1" dede'ein(e-e') uz(e)uz(e:) 
z=o -" 2'TT 1 + /)(z 

1" dede' in{fJ-fJ') uz(e)uz(e'») + --e . 
-" 2'TT 1 + e i3EZ 

(6.5) 

Expanding the eigenfunctions in Fourier series (again in 
standard notations): 

00 

u z(6) = 'TT- 1/2 L; A~~z) cosre, 
r=O 

(6.6) 

00 

u z(6) = 'TT- 1/2 L; BW) sinre, 
r=O 

leads to 
00 

(mo(O» = - 1/2 + 2.6 B(El)[A~z)F, (6.8) 
1=0 

(mn(O» = - t + t~o ~B(Ez)[A'!rJ)F + B(EI)[B~2nl)F~, 
n '" 0, (6.9) 
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where B(x) is defined by (5.8). The dependence on h 
appears through the Fourier coefficients of A's and B's. 

Using the relations6 

A(211 --;;. 0) 
2n n -+00 ~ 

n-<21) --;;. 0 j 
""-'2n n-+oo 

uniformly in 1, (6.10) 

one obtains the expected result: 

(6.11) 

If h » 1, all the eigenvalues are positive except EO' If in 
addition the temperature is taken to be absolute zero, 
the magnetization becomes 

(mo(O» = - ~ + 2[AWl]2, 

(mn(O» = - ~ + ~A~~]2, n;o' O. 

But for h ~ 1, 6 

AWl s; 1/../2, 
A~~ s; 0, n ;0' O. 

Therefore, 

~ 1 
= "2, 

(mn(O» s; - ~, n;o' O. 

(6. 12) 

(6.13) 

(6.14) 

(6.15) 

All the spins are thus lined up in the negative z direc­
tion except the zeroth spin, which points in the opposite 
direction. 

From (6.11) and the conservation of total magnetization, 
we expect that in the relaxation problem the magnetiza­
tion at any site, (mn(t», will approach - ~ as t ~ 00. This 
is easily checked. Equation (2.24) becomes in this case 

( ) 
1 ~ 1" dede' in(e-El')-i(cosEl-cosS')t 

mn(t) = - "2 + L.J --e 
1=0 -" 21T 

(6.16) 

Integration by parts shows that 

(mn(f» = - ~ + O(l/f), t ~ 00. (6.17) 

Hence mn(oo) = - ~, and all the spins are lined up in the 
negative z direction. We note that (mn(oo» is equal to 
the spatial average of the initial magnetization, which 
has the value - ~. 

7. SPATIALLY ALTERNATING FIELD 

In this final section the case of a spatially alternating 
magnetic field is considered. We set 

h _ {O, n odd, 
n - 2h > 0, n even, (7.1) 

where the factor of 2 is for later convenience. Now for 
an angular variable cp not restricted to the range - 1T to 
1T, we have the relation 

(7.2) 
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Therefore, (2.14) for F leads to 

F(e - e') =!!... I; einft:j-e') 
11' n even 

h 00 
= - I; e 2in(e-e') 

1T n =-00 

= .!! 21T I; O[2(e - e') + 211T] 
1T 1=-00 

= h[o(e - e') + o(e - e' + 1T) + o(e - e' - 1T) 

+ O(e - e' + 21T) + li(e - e' - 21T)]. (7.3) 

A delta function at the end-points of an integration inter­
val is taken to be 1/2 of its usual value, i.e., 

jdef(e)o(e - 1T) = Y(1T) 

and 

j def(e)li(e + 1T) = ~f(- 1T). 
-n 

(7.4) 

As before, {~~~~~} denote the {'b~eJ'} eigenfunctions. Sub­
stitution of (7.3) into the eigenvalue equation (2.17) 
gives 

cosewx(e) + h[wx(e) + A(- e)wx(1T + e) 

+ A(e)wx(e - 1T)] = Exwx(e). 

wherewx(e) denotes eitherux(e) orux(e),and 

~ 1, x> 0, 

A(x) = {1/2, x = 0, 

0, x < O. 

(7.5) 

We first consider the even solutions. It is convenient 
to consider only positive values of e, 0 ~ e ~ 1T. It 
follows from (7.4), then, that 

(7.6) 

where we have set 

(7.7) 

and used 

(7.8) 

Change variable e ~ 1T - e. Equation (7.6) then takes the 
form 

Eliminatingu x(1T- e) from (7.6) and (7.9) gives 

[Ex2 - (h 2 + cos2 e)]ux(e) = O. 

We set 

(7.10) 

(7.11) 

The signs ± are needed because the eigenstates are not 
parametrized by A alone. Combining (7.11) and (7.10), 
we have 

[cos 2,\ - cos 2 e]ux±(e) = 0, 

with the solution 

(7. 12) 
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(7.13) 

Substituting (7.13) back into the original Eq. (7.6) gives 

(7.14) 

Therefore, 

u>..±(e) == A±(A)f6(e - A) + (l/h)(E>..± - cosA)6(e - 1T + A)l. 
(7. 15) 

The function A±(A) is determined by the normalization 

{Ir deu>..±(e)uA'±(e) == 6(A - A'), (7.16) 
-" 

and is readily found to be 

(7. 17) 

Note that the spectrum, as given by (7.7) and (7.11), 
consists of two separate branches: 

(7.18) 

The + branch ranges continuously from 2h to h + 
(1 + h 2)1.i2, while the - branch ranges from - (1 + h 2)1.i2 
+ h to O. 

We now turn to the odd eigenfunctions. It follows from 
(7.5) that for positive values of e, i.e., O:s e:s rr, we have 

where the energy eigenvalue is given by 

E>..::::: EA + h. 

(7.19) 

(7.20) 

Equation (7.19) is the same as (7.6) for the even eigen­
functions, except for h -t - h. Consequently, EA. is the 
same as EA±, and 

E A ± == - h ± (h 2 + COS 2A)1/2, O:s A:S rr/2. (7.21) 

For positive values of e, the odd eigenfunctions ~± (e) 
are given by (7.15) and (7.17) with all h replaced by - h. 
For negative values of e we use 

(7.22) 

It is straightforward but somewhat lengthy to prove that 
{uA±(e),ilA±(e)} form a complete set. We only quote the 
results here, which follow directly from using (7.15), 
(7. 17), and the corresponding equations for the odd 
eigenfunctions: 

,,/2 
1. dA[U>..+(e)u>..+(e') + u>..-<e)uA-<e') + u>..+(e)uA+(e') o 

+ ude)ude')] == 6(e - e'). (7.23) 

Consequently, any function/(e) can be expanded in the 
eigenfunctions {uA±(e),UA±(e)}. 

The eigensolutions obtained above can now be used to 

Using the explicit form (7.15) and simplifying, we obtain 

Crt (t)Cn (t) even == - J, de cos nA B(EA+)A+ (A) ---( + ) 2 r ,,/2 2 ~ 2 [ 1 
1T 0 2A~~) 

+ ~(- l)n(EA+ - COSA) cos(2t COSA)] + B(E>..JA~(A) 

x [_1_ + ~(- l)n(E>.._ - COSA) cos(2t COSA)]/' 
2A~(A) h I 

(7.25) 

The contribution of the odd modes is of the same form, 
but with cos 2m. -t sin2nA in the integrand. Hence we 
have 

(C;(t)Cn (t» ::= (c;(t)cn (t»even + (c,;(t)c" (t)Odd 

::= ;- fOIf.i2 dA[B(EA+) + B(E>..J] 

+ i..(_1)n1.
lf

.i2dA cos(2t COSA) 
rrh 0 

(7.26) 

Notice that the spatially-averaged magnetization m == 
i[(mn(t» + (mn+1(t»] is independent of time: 

- 1 r Tf .i2 1 
m == ;- Jo de[ B(E>..+) + B(EA_)] - 2' 

To obtain results of Simple form, we consider the 
special case h » 1, so that 

E>..+ ~ 2h, E>.._ ~ 0, 

A~(A) ~ t 

(7.27) 

as can be seen from (7.11), (7.19), and (7.20). There­
fore, 

[B(E>..JA~(A)(EA+ - COSA) + B(E>..JA~(A)(EA_ - COSA)] 

~ - h/8. (7.28) 

It follows from (7. 26) and (7.27) that 

(mn(t» == (c,;(t)cn(t» - t 
~ iii - (- 1)n 1. ,,/2 dA cos(2t COSA). 

21T 0 

The integral is proportional to a Bessel function of 
zeroth order: 

r Tf .i2 rr 
J, dA cos(2t cosA) == -Jo(2t). 
o 2 

(7.29) 

study the magnetization of the system, as given by (2.24). Therefore, 
Consider first the contribution of the even modes, 
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(7.30) 

This result holds for all t ~ O. Asymptotically, 

(m (t) ~ iii _ (- l)n cOS(2t-1T/4) t -t CXl. (7.31) 
n 4 (7T1)1/2' 

For general value of h, it also follows from (7.26) that 
asympotically 
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(m (t) = m + (- l)n~(h) cos(2t - 1T/4) , t -+ <Xl, (7.32) 
n ~ 

where the constant ~ depends on the value of h only. 

8. SUMMARY 

We have found the spectrum and eigenfunctions of the 
one-dimensional X-Y model in various kinds of magnetic 
fields. If the magnetic field is finite in extent or, if 
infinite, approaches zero sufficiently rapidly so that 
6nhn converges, then the spectrum consists of the 
bounded continuum (which is the spectrum in the absence 
of a magnetic field) plus a finite number of discrete 
eigenvalues outside the continuum. If the magnetic field 
increases linearly or quadratically with the spin sites, 
then the spectrum is much more radically changed and 
becomes completely discrete. Finally, for the case of a 
spatially alternating field, the spectrum consists of two 
separate continuum branches. 

In the relaxation problem, the magnetization at any spin 
site relaxes to a limiting value (mn(<Xl) with an asymp­
totic t- 1 dependence in each of the above cases except 
that of an alternating field, where the asymptotic time 
dependence is t- l12 • The fact that the initial magnetic 
field affects the asymptotic time dependence of the mag­
netization is understandable; in the extreme case of an 
initial uniform magnetic field, the magnetization at any 
spin site stays constant even after the field is switched 
off. 

The limiting value of the magnetization, (mn(<Xl) , is non­
vanishing for the case of a quadratically increasing field 
or an alternating field, but equal to zero for the other 
cases. This result is again physically expected. The 
total magnetization cannot change in the relaxation prob­
lem. Hence (mn (<Xl) must be equal to the spatial average 
of the initial magnetization, which is precisely our 
result. 

APPENDIX: NORMALIZATION INTEGRALS 

In this appendix the two normalization integrals (3.2S), 
(3.29) will be derived. 

Consider 

J(z,Z') == {Ir dOM(cose,z)M(cose,z'). 
-" (cose - z)(cosO - z') 

Using (3.9) for M and the decomposition 

(A1) 

(cose -z)(~ose -z') = z ~z, (cose
1
_z - coso

1
_z} 

we rewriteJ(z,z') in the form 

J(z,z') 

where 

Kn(z) = ]" de cosne M(cose,z) (A3) 
-" cose - z 

= _ t h/s/(z) ]" de cosnO cosle. (A4) 
/=0 (1 + 00)1T -" cose - z 

For definiteness, consider n < N. The final result is 
independent of this assumption. 
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Recalling the definition of Qn(z) [(3.14) and (3.56)], we 
have 

]" de cosne cosle 
-" cose - z 

= {~Qn+/(Z) + Qn-l(z)], 

2[Q/+n(z) + Q/_n(z)], 

= {Qn(Z)T1(Z), 

Ql(z)Tn(z), 

l ::s n, 

l ~ n, 

l ::s n, 

l ~ n, 

where Tn(z) is the Tchebichef polynomial of the first 
kind, 

and 

11 1 ,2 = Z :I: -./(z2 - 1)112. 

Therefore, 

h/S/(Z)Ql(Z)Tn(z) ~ h/s/(z)Qn(z)T1(z) 
Kn(z) = - 6 - LJ 

/2:n (1 + OO,n)1T l<n (1 + 00,zl1T 

= _ t hls/(z)Q/(Z)Tn(z) + 6 h/s1(z)Ql(Z)Tn(Z) 

/=0 (1 + 00)1T l<n (1 + 00)1T 

his /(z)Qn (z)T1(z) 

- En (i + 00,I)1T • 

(A5) 

(A6) 

(A7) 

(AS) 

(A9) 

The right-hand side can be put into more compact form 
as follows: 

-t h/s/(z)Q/(z)Tn(z) = _ Tn(z)[A(z) - 1] 
1=0 (1 + 00,I)1T 

= - Tn(z)A(z) + Tn(z), (A10) 

where (3.13) has been used. USing the recurrence 
relation (3.6) satisfied by the coefficients SI(Z), one can 
show that 

and 
~l h/s/(z)T1(z) 

- Qn(z)LJ 
1=0 (1 + 00)1T 

Qn(z) = -~ [Tn(z)sn_l(z) - Tn-1(z)sn(z)]. (A12) 

Putting (A10), (All), and (A12) into (A9) and Simplifying, 
one gets 

(A13) 

Therefore, (A2) becomes 

1 (N h 
J(z,z') = --, 6 n sn(z')Tn(z)A(z) 

z - z n=O (1 + 00,n)1T 

~ h. ) - L! (1 +" ) sn(z)Tn(z')A(z') , 
,,-0 VO.n 1T 

1 
= ---[M(z',z)A(z') -M(z,z')A(z)]. 

z -z' 
(A14) 
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The normalization integral for the discrete eigen­
functions is 

N. = i: d6[u t(6)]2 

= ilt dB (M(COS6, E j ») 2 

-tl cosB - Ei 

= J(EpE.). (A15) 

In (A14), set z' = Ei j taking limit z -+ z' gives the re­
quired result: 

(A16) 

where A(Ej) = 0 has been used. 

Now consider the continuum eigenfunctions. Using the 
explicit expressions (3.18) and (3. 20), we have 

Ilt d6uA(6)uA'(O) = 211 df.' P M(f.', II) P M(f.', II') 
-II -1 (1 - 1-'2)112 I-' - II I-' - v' 

+ 1 M(v',v)[N(v') + A-(v')] 
2 v' - II 

+ 1. M(v, v') [A+(v) + A-(v)] 
2 v - v' 

where 

I-' = cosO, v = cos~, v' = cos~.'. 

(A17) 

In accordance with the discussion in Sec. 3. 5, the POin­
care-Bertrand formula is applied by writing 

p--p--=--p---p--1 1 1~ 1 1) 
" , jj-V jj-V v -v jj-V I-'-V 

+ w20(1-' - v)o(1-' - v'). (A18) 

Therefore, the first term on the right-hand side of (A17) 
becomes 
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2(_1_11 djj pM(jj,II)M(jj,v') 
V' - v -1 (1 - jj2)112 jj - II' 

__ 1_11 djj p M(jj, V)M(jj,V'») 
v' - v -1 (1 - jJ.2)1t.l jj - v 

+ 2 w2M2(V, v) O(v _ v'). 
(1 - v2 )1t.l 

(A19) 

The expression [ •.• ] in (A19) can be evaluated from 
(A14) by taking limits z -+ v ± iE, Z' -+ v' ± iE, 

2 (_1_ 11 dl-' pM{I-', v)M(I-', v') 
v' - V -1 (1 - jj2)112 I-' - v' 

__ 1_i 1 djj pM(jj,v)M(jj,II')\ 
v' - II -1(1 - jj2)1/2 jj - V ) 

= ~ M(v, v')[A+(v) + A-(v)] _ ~ M(v', v) [N(v') + A-(v')]. 
v' - II II' - v 

Putting (A19), (A20) into (A17) and simplifying, one 
arrives at the final result: 

I lt d6uA(6)uA!(6) = N(v)A-(v) o(~ _ ~'). 
-It 2 

Hence (3.29) is derived. 
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Theory of nonlocal electromagnetic elastic solids* 
A. Cernal Eringen 
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A continuum theory of nonlocal electromagnetic elastic solids is proposed. Nonlocal and local 
balance laws and jump conditions are obtained. Through the use of an extension of Clausius-Duhem 
inequality, encompassing nonlocal effects, E-M momentum and constitutive equations are derived 
and restricted. 

1. I NTRODUCTI ON 
It is well known that the Maxwell theory of electro­
magnetism (classical theory) predicts a constant wave 
velocity and consequently a constant refractive index in 
an isotropic nondissipative medium. While for some 
gases in moderate pressures this is nearly the case, for 
all other substances experiments indicate that the re­
fractive index depends on the frequency and consequent­
ly dispersion is the rule rather than exception. In fact, 
starting even with radio waves, in invisible and ultra­
violet regions there is no agreement whatsoever between 
the measured refractive index and the calculations based 
on the classical theory. Moreover, the classical theory 
possess no mechanism for the absorption phenomena 
that occurs in the neighborhood of certain critical fre­
quencies. To incorporate these effects either supple­
mentary excursions are made to molecular and atomic 
theories to remedy partially the classical theory, cf. 
Born and Wolf (Ref. 1 , Sec. 2. 3.4) or quantum mechani­
cal approaches are used, cf. Ref. 2. 

For magnetic materials the existence of magnetic do­
mains, instabilities, and spin waves cannot be explained 
through the classical formalism. ExtenSive published 
work in this area, in one form or another, makes use of 
ideas of inner structure and domains that exist in 
material either in the form of multipoles or atomic 
structures, cf. Brown3 , Tiersten4, Eringen and Maugin5 
for continuum theories and Kittel6 ,Van Vleck7,Bloch8 
and Heisenberg 9 for quantum mechanical approaches. 

Recently,IO,ll we have shown that by means of the non­
local theories of continua one can take into account the 
effects of distant atomic, molecular, and granular inter­
actions thus accounting for the complete dispersion 
curve of elastic waves in lattice structures. The present 
paper's intent is the construction of the corresponding 
nonlocal theory for the elastic materials subject to 
electromagnetic interactions. While any theory involving 
electromagnetic fields should be based on relativistic 
considerations, it is possible to construct a rational 
theory of electromagnetism on nonrelativistic grounds 
For Simplicity in the physics of the matter here we 
avoid relativity, however, borrowing some of the critical 
results valid for small material velocities, v, as com­
pared to speed of light in vacuum, (v2jc2 « 1). 

In Sec. 2, starting with the global electromechanical 
balance laws for the entire body, we obtain the equivalent 
local laws. In Sec. 3 we formulate the second law of 
thermodynamics valid for the entire body. These equa­
tions, as against the classical field theories, contain 
nonlocal residuals that account for the distant atomic 
and molecular interactions. The integrals of the non­
local residuals over the entire body vanish. The deter­
mination of the nonlocal residuals is an integral part of 
the nonlocal theory. 

In Sec. 4 a diSCUSSion is presented f or the electromag­
netic momentum and energy and various classical pro-
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posals are examined. Section 5 is devoted to the deter­
mination of the constitutive equations of local E-M elast­
ic solids. The constitutive equations of the nonlocal E-M 
elastic solids are obtained and restricted through the 
nonlocal entropy inequality. The invariance require­
ments are studied. The theory is exact and valid for 
fields and deformations of arbitrary magnitude. We 
postpone the discussion of the linear theory and its 
application to electromagnetic waves to a future paper. 

2. BALANCE LAWS 

The balance laws of continuum theory of electromechani­
cal media have been formulated both from the nonrela­
tivistic and relativistic points of view, cf. Truesdell and 
Toupinl2,Dixon and Eringen13,Grot and Eringenl4. The 
integral form of these laws are: 

Conservation oj Mass: 

!! J pdv = O. 
dt 1J -a 

Balance oj Momentum: 

(2.1) 

d
d J p(v+g)-J tkda,,-J pfdv=O. (2.2) 
t1J-a a-a 1J-a 

Balance oj Moment oj Momentum: 

.E:... J px x (v + g)dv - J x X tkdak - J px x fdv = O. 
dt 1J -a :I -a '0-0 

(2.3) 

Conservation oj Energy: 

!!J p(€+~v2)-J (tk'V+qk)da
k dt 1J -a :I-a 

- J p(f·v + h)dv = O. (2.4) 
1J -a 

Faraday's Law: 

J $.dx+l!!J B·da=O. (2.5) 
e-y c dt:., 

Ampere's Law (as modified by Maxwell): 

J :Ie • dx _l !!.. J D • da _l J , • da = O. 
e, c dts, c 3-y (2.6) 

Gauss' Law: 

J D'da- J qdv = O. (2.7) 
3-0 1J -a 

Conservation oj Magnetic Flux: 

J B·da=O. (2.8) 
3 -a 
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Conservation oj Charge: 

.E:.. J qdv + J 8· da = 0. 
dt '0 -0 S -0 

(2.9) 

Here: 

p = mass density, 

g == E-M momentum 

D == dielectric displacement 
vector, 

f == total internal energy 
density, 

density, q == free charge density, h == energy supply density, 

tk = stress vectors, v = it == velocity field, B == magnetic flux, 

qk = total energy flux, f == total body force density, e == speed of light in vacuum, 

and 
1 

& == E + -v x B, 
e 

:JC== H - 1v x D, 
e 

8=J-qv, 

(2.10a) 

(2.10b) 

(2.10c) 

in which E == electric field, H == magnetic field, J == free 
current. 

The balance laws (2.1) to (2.4) and (2.7) to (2.9) are 
expressed over a material volume 'O(enclosed by a sur­
face S) which is being swept by a discontinuity surface 
(J having velocity u. The E-M laws are expressed in 
Heaviside-Lorentz units. Integrals in (2.5) and (2.6) 
are over an open material surface, S, (enclosed within 
a curve ~), which is being swept by a discontinuity curve 
y having velocity u. The regions of integrations '0 - (J, 

S - (J, and ~ - yare over all points of '0, S and ~ except 
those that are contained on (J and y. 

The motion carries any material point X in the unde­
formed body B to a spatial place x in the deformed body 
ill at time t. Thus, the motion is expressed by 

x = x(X, t). 

We refer both x and X to a rectangular coordinate syst­
em so that in component notation 

Xk=Xk(XK,t), k,K=1,2,3, (2.11) 

which is assumed to have unique inverse 

(2.12) 

in B, at all times, except possibly some Singular sur­
faces, lines and pOints. Thus, we assume 

det X\K > 0, in '0 - (J. (2.13) 

All vector and tensor fields in B (and its image ill with 
volume '0 and surface S) are referred to material co­
ordinates XK (and spatial coordinates Xk). For future 
convenience, we also introduce polarization vector P 
and magnetization vector M by 

D=E+P, B=H+M (2.14) 

The integral balance laws (2.1) to (2.9) have either of 
the following two forms: 

.E:.. J cpdv - J Tkdak - J gdv = 0, 
dt '0 -0 S -0 '0 -0 

(2.15) 

(2.16) 

J. Math. Phys., Vol. 14, No.6, June 1973 

Equations (2.15) and (2.16) may be transformed by the 
generalized Green-Gauss theorem and Stokes' theorem, 
respectively, into the following forms (see Ref. 15, p. 77): 

[a cp + div(cpv) _ Tk k - gldv 
at 'J J 

'0 -0 

+ ~[CP(Vk- uk) - Tk]nkda = 0, (2.17) 

J (q-curl h - r)· da + 1 [qx(v - u) - h)· kds = 0, 
s-r 0 (2.18) 

where k is the unit tangent vector on y. A bold face 
bracket indicates the jump across (J in (2. 17) and 
across y in (2.18) and 

* aq 
q == - + (div q)v + curl (q x v). 

at 
(2.19) 

Employing the form (2.17) and (2.18), we transform 
(2.1), (2. 2)-(2. 9) to 

J [a
p 

+ (pVk) kl dv + l(p(v k - uk)]nkda = 0, (2.20) 
'0-0. at ,~ 0 

J [p(v + g) - tk k - pf]dv + J (v + g)[ap 
+ (pvk) kldV 

'0-0 ' '0-0 at ' ~ 

J (pv x g - X k X tk )dv 

'0·0 '[a p J + J x x (v + g) - + (PVk) k dv 
'0-0 at ' 

- J x X (tk k + pf - pV - pg)dv . , 
'U-o 

+ 1 [px x (v + g)(Vk + uk) - px X tk]nkda = 0, 
o 

(2.22) 

J (PE-tk·v k- qk k-pg·v-ph)dv 
"0-0 " 

+ J (f + ~V2)[ap + (pVk) kldV 
'0-0 at ,~ 

- J v· (tk , k + pf - pV - pg)dv 
'0 -0 

+ ~ [p(f + ~v2)(vk - uk) - t k. V - qk]nkda = 0, 
(2.23) 

J (V x & + 1B).da + J fE + 1u x Bl·kds = 0, (2.24) 
S-o e rL e J 

J Iv x :JC _1;' -18).da + J [H - 1u x D] ·kds = 0, 
8""),\ e ere (2.25) 
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J (V 0 D - q)dv + J [D] 0 nda = 0, 
~ -0 0 

(2026) 

J V oBdv + J [B] 0 nda = 0, 
~ -0 0 

(2.27) 

J ~ol+aq +Vo(qv)ldv+ J[I-qu]onda=O. 
"0-0 L at J a (2.28) 

The local balance laws of classical theory are obtained 
by positing that these integrals be valid for every part 
of the body 0 In this case then, the integrands of volume 
and surface integrals in the foregoing equations are set 
equal to zero. 

When the long range intermolecular forces are strong 
this is not permissible. However, we can localize these 
expressions by introducing the localization residuals 
which account for the effects of nonlocal fields. Thus, 
(2.20) to (2.28) are equivalent to: 

Mass: 

ap 
- + (pVk) k = p, in '0 - u, 
at' (2.29) 
[p(Vk- uk) - pk]nk = 0, on u. 

Momentum: 

tk k + p(f - v - g) = Mv + g) - pl, in '0 - u, , 
(tk - p(v + g)(Vk - Uk) + ik]nk = 0, on u, (2.30) 

Moment oj Momentum: 

x k x tk - pv X g = px x i - pl, in '0 - u, (2. 31a) , 
[px X [tk - (v + g)(Vk - Uk)] + [k] = 0, on u. 

Energy: 

pe - pg °v - tk ·v, k - qk, k - ph 

= ph - pv·i - P[f. - (v2j2) - vog], 

(2. 31b) 

in'O-u, 
(2.32a) 

(tk °V + qk - p(f. + !v2)(Vk - Uk) + hk]nk = 0, on u. 

Faraday's Law: 

V X & + 1B =lb, in '0- u, 
c c 

[E + ~u x B + EJ x n = 0, on u. 

Ampere's Law: 

1 * 1 1 A 

V X 3C--D--I=-I, in'O-u, 
c c c 

[H - ~u x D + HJ X n = 0, on u. 

Gauss' Law: 

V·D-q=q, in'O-u, 

[D + O]on = 0, on 0, 

Magnetic Flux: 

V·B = fh, in '0- u, 

[B + B] . n = 0, on u. 
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(2. 32b) 

(2. 33a) 

(2. 33b) 

(2. 34a) 

(2. 34b) 

(2.35) 

(2. 36a) 

(2. 36b) 

Conservation oj Charge: 
op 

V·I + - + V· (qv) = cr, in '0 - u, 
at 
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(2. 37a) 

[I + 1;]. n = 0. (2. 37b) 

If we further introduce the nonlocal current, J, by 

(2.38) 

then upon taking divergence of (2. 34a), and comparing the 
result with (2.37) we obtain 

A aq a = - v .J - - (2.39) 
at' 

so that (2. 37a) is equivalent to 

V· (J + J) + i. (q + q) = 0. 
at 

(2.40) 

This is the expression of the law of conservation of non­
local charge. By taking divergence of (2. 33a) and com­
paring the result with (2. 36a) we obtain 

afh A - + V· (fhv) = V ·b. 
at 

(2.41) 

This is the expression of the law of balance of nonlocal 
pole strength. It is cleaz:. that the nature and existence 
of fh is tied with that of b. 

The foregoing equations contain the localization resi­
duals, p,pk ,f,lk, l,lk, h, hk, b, E,,, ,H,l) ,0, fh, n, cr and f 
which are introduced to take into account the effects of 
fields at all other points of the body on the point at 
which local balance laws (2.29) to (2.37) are wr"itten. 
Integrals of these residuals over the manifolds of their 
definitions vanish, i.e., 

J (P,pl,pl,ph,l),fh,a)dv = 0, 
'0 -0 

J (Ak fk lk hk Dk Bk)n da - ° a VJ , , , " k - , (2.42) 

J (b,,,, 1;) • da = 0, 
~ -0 

J (E,H) ·kds = 0. 
y 

Physical significance of these residuals is clear from 
the equations in which they first occur. For example, p 
represents the mass production or destruction at a point 
x due to effect of all points of the body. The existence 
of p is well known to us from the theories of chemically 
reacting media. For a nonreacting continuum p may 
still exist (even though small) due to the mass carried 
by the mobile electrons and neutral atoms. Similarly i 
is the nonlocal body force at x due to long range inter­
molecular attractions. The nonlocal residuals are 
grouped as volume, surface and line residuals as 
apparent from their domains of integrations _ Ij!hQ\l!n in 
(2. 42). The mechanic~l volu,!lle residuals (P, f, t, h) and 
surface residuals (fJk, fk, lk ,hk) were introduced and 
discussed by us previously, cf. Erigen and Edelen 10. 

Electromagnetic residuals q, fh, cr,Dk, BK, b, 9, i,E and H 
are new and require a few remarks. We recognize q as 
the induced nonlocal charge at a point x of the body due 
to charges at all other points. Similarly fh (if it exists) 
may be envisioned as the induced magnetic pole strE,1ngth 
at x by the rest of the body. The nonlocal residual ~ 
represents the contribution fr2m all other points of the 
body to the currents at x, and b to the magnetic flux. 
Corresponding to these surface residuals are indicated 
by (0, B) and line residuals, by E and iI. 
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When all residuals vanish at all points of the body the 
balance laws (2.29) to (2.37) revert back to the local 
balance laws of electromechanical continua. Thus, the 
distinguishing feature of nonlocal continuum theories is 
the presence of the localization residuals. Different 
nonlocal theories then arise from the different charact­
er of the localization residuals. Determination of these 
residuals is an integral part of the nonlocal continuum 
physics. The nature and constitution of the body must, 
therefore, be examined carefully in the light of its re­
sponse to external effects. 

It is well known that in the transmission of high fre­
quency mechanical signals distant intermolecular forces 
play an important role giving rise to dispersive effects 
that are not accounted for in the classical field theories. 
In the E- M theory, importance of action at distance is 
well accepted. In optical range and beyond (ultraviolet 
region) dispersive effects become important which 
cannot be accounted for by use of the Maxwell theory 
of electromagnetism (Born and Wolf, Ref. 1, Sec. 2. 3.4). 
In this range, optical resonance and absorption play 
dominant roles. While some of these effects, e.g., spin 
waves, can be treated by means of polar theories of 
electromagnetism (e.g., theories involving magnetiza­
tion gradients), in the region of short wave lengths these 
theories also fail. Moreover, gradient theories con­
stitute extensions of the classical theory and they are 
included as special cases in the present theory. We 
believe that a large class of physical phenomena beyond 
these theories can be brought within the domain of 
continuum physics by systematic consideration of non­
local effects. 

3. SECOND LAW OF THERMODYNAMICS 

The second law of thermodynamics and ensuing different 
forms of the Clausius-Duhem inequality were formulated 
by Grot and Erigen14 in the context of the special theory 
of relativity. An appropriate form for nonrelativistic . 
case of the second law16 is, 

!!.. J pTJdv - § 
dt '0 -0 s-o 

1 -(q - c& x 3C) ·da 
8 

- J l(ph + 1)0' lS)dv? O. 
'0-0 8 

(3.1) 

Here TJ is the entropy density, 8 > 0 is the absolute tem­
perature, cIS x 3C is the poynting vector and '0 is the 
external current source. 

The localization of (3.1) with the same scheme of Sec. 2, 
gives 

in '0 - a, 
(3.2a) 

on a, 
(3.2b) 

where sand Sk are entropy localization residuals sub­
ject to 

(3.3) 

Using (2. 33a) and (2.34) we write 
* * A A cV • (IS x 3C) = - 3C' B - & . D - &.1) + 3C' b - & .1). 

(3.4) 
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Substituting this into (3. 2a) and eliminating h between 
(3. 2a) and (2. 32a), we obtain 

p(." - ~ + v 'g) + ltk ·V k 

8 8 8 ' 

_l (q - c& x 3C). V l + l (IS· D + :re. B) 
8 8 8 

+ - IS . (8 - .9 0 - -f . v + - 8TJ - £ + - + v . g 1 ) PAP ~ v2 ) 
8 8 8 2 

1 ~ A P A 

+ -(IS· iii + :re. b) + -(h - s) ? 0 
8 8 ' 

in '0 - a. 
(3.5) 

This is the Clausius-Duhem inequality. Inequality (3.5) 
may be written in other equivalent forms appropriate 
for bodies with different constitutional properties (e.g., 
E-M elastic solids,fluids, etc.). 

We not postulate that in all thermodynamically admiss­
ible processes, the Clausius-Duhem inequality (3.5) zn 
'0 - a and (3. 2b) on a be satisfied. Moreover, the con­
stitution of body must be such as not to violate (3.5) 
for all possible independent states of the body. 

It is important to draw attention to the fact that so far 
we have not chosen any form for the momentum density 
g and that the total internal energy includes the kinetic 
energy ariSing from motion of the body in E-M fields. 

4. ELECTROMAGNETIC MOMENTUM AND ENERGY 

For the Maxwell- Lorentz theory of electromagnetism 
various forms of electromagnetic momentum, energy, 
and stress tensor have been proposed. The origins of 
the ideas for these concepts rely heavily on the vacuum 
or rigid body electromagnetism and therefore are con­
troversial as far as deformable bodies are concerned 
(cf. remarks made by Dunkin and Eringen17 and Trues­
dell and Toupin12). A systematic approach was present­
ed by Dixon and Eringen13 for nonrelativistic deform­
able media, by Grot and Eringen14 for relativistic 
theory and by DeGroot and Suttorp18 on statistical mech­
anical basis. While all these different approaches 
appear to agree in the final forms of these quantities, 
they require certain primitive postUlates in the form of 
E-M forces, energy or momenta. We do not wish to open 
this question once again. However, we wish to give a new 
approach from thermodynamical viewpoint in which no 
specific forms for stress, energy and momentum are 
postulated. 

Since the question is equally valid for the local theory, 
to simplify our discussion we examine these concepts in 
the light of the local theory. 

For the local theory, Clausius-Duhem inequality (3.6) 
may be written in the form 

P ..:.. 1 1 
~(ljI +:it.g + 8TJ) + -TK'X'K + -QK8'K 

8 8 82 

Po * * Po -+ - (IS· D + 3C' B) + - &. , ? 0, in '0 - a, 
Pe p8 

(4.1 ) 

where we set 

1ji == ljI- x· g, (4.2a) 

tk == .E...TKxk K' 
Po ' 

q - c& x 3C == .E...QKx K 
Po ' 

(4.2b) 
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and use the relation 

We must now postulate a constitutive equation for the 
constitutive variables ljI, TK, QK,:re and {;, and an in­
variance requirement. However, for the determination of 
g the following minimal requirement suffices. For pure­
ly mechanical media we have g = 0 and the momentum 
equations determine all other rates x, x', etc. Thus, the 
constitutive variables cannot depend on rates higher 
than x. H they did, then the equation of momentum 
balance can be used to eliminate all higher rates of X. 

The homogeneity of space requires that these variables 
must not depend on the origin of the spatial coordinates 
and hence on x. Thus, these variables shall depend on x 
and other variables not involving x, e.g., 

(4.3) 

Substitution of (4.3) into (4.1) gives 

Po (i3lji ) Po . 1 1 - -+g ·x--0II'+ el])+-TK· x +-QKe e oX e e ,K e2 ,K 

+ Po (X. B + {;. D) + Po {;. a 2: 0, 
pe pe 

where lji' denotes material time rate of ljI with x = 
fixed. H this inequality is to be valid for all independent 
variation of x, then we must have 

oljl 
g=--. 

ax (4.4) 

Note that this result is valid for any material since we 
have so far made no assumption on the material consti­
tution. Moreover, we have not yet stated any invariance 
requirement on lli. 
From (4. 2a) and (4.4) it follows that 

a 1/1 agi -=vi -· av av 
(4.5) 

Thus, the invariance requirement of 1/1 is tied to that of 
gi' We must investigate this question in detail. 

As stated above in the literature several proposals 
exist for the E-M momenta, energy and stress. We cite 
three well-known forms of the E-M momentum: 

Minkowsky proposal: 

g = (D x B)/pc. 

Abraham's form: 

g = (l/pc)(E x H). 

Another form: 

g = (E x B)/pc. 

(4.6) 

(4.7) 

(4.8) 

For a discussion of (4.6) and (4.7) see MlDller Ref. 19, 
Sec. 72. 

While there exist arguments in favor of one of these 
forms to others for various types of media (e.g.,di­
electrics, magnetic materials), none of the arguments 
can be substantiated either on the basis of physical 
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principles or existing experiments. In fact, the selection 
of anyone of the above forms is consistent with all 
basic balance laws and thermodynamics. Moreover, they 
are consistent with the relativistic E -M theory to within 
an approximation v2/ c2 as can be seen from the follow­
ing. Suppose that we select the Minkowski form (4.6). 
From relativistic consideration it is well known that in 
a moving frame of reference, to within v2/ c2, we have 

1 
~=D +-v x H, 

1 <B = B--v x E, (4.9) 
c c 

where D, B, E and H are, as usual, the fields in the rest 
frame. Thus, the E-M momentum in the moving frame 
of reference is given by 

g = (~ x <B)/pc. (4.10) 

Upon substituting (4.9) into (4.10) we obtain 

g i = gi + (Mtij - h6 jj )(v/c) + (1/c2)v iH·v x E, (4.11) 

where 

M tij :; E P j + H iB j - t(E' D + H· B)6 ij' 

h :; t(E . D + H • B) 

(4.12) 

are respectively the well-known expressions of the 
Minkowski E-M stress tensor and energy. We note that 
to within v2/ c2 (nonrelativistic limit) S i is given by 

(4.13) 

This result remains valid for other forms (4.7) and 
(4.8) of the E-M momentum except that Mtij and h have 
other forms. For example, in (4.8) they have the forms 

Mtij = EiE j + BiBj - t(E2 + B2)6 ij , h:; t(E2 + B2). 
(4.14) 

Thus, for the expression of the free energy 1/1 in moving 
frame through (4.4), i.e., 

01/1 aS i -=V.-
oV 'av 

and (4.12) we obtain 

1 v·v. 
\}I = 1/1 + -~(Nt .. - hO .. ) 2p c2 I) I) , 

(4. 15) 

(4. 16) 

where 1/1 is the value of the free energy in the rest 
frame. It is now clear that to within v2/ c2,the free 
energy \}I is independent of v. We have, therefore, shown 
that for all three expressions of the E-M momentum, the 
free energy 1/1 is independent of v to within an approxi­
mation excluding the terms of the order v2/ c2 (or 
higher). 

Hence, 

ljI = 1/I-v'g, (4.17) 

where 1/1 is independent of v. 

5. CONSTITUTIVE EQUATIONS OF LOCAL E-M 
ELASTIC SOLIDS 

The constitutive equations of E -M elastic solids may be 
constructed by assuming that 1/1, TK, Q, X, {; and ~ are 
functions of x,K,D,B,X and e,K' For simplicity we 
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employ the equivalent set (x, K' 15K, SK, 0 and 0, K)' 
where 

15 K =PoXK Dk P ,k , 

Thus, 

Similar equations are written for TK, Q, 3C, 8 and :J. 

First we note the identities 

(5.1) 

(5.2) 

(5.3) 

Upon substituting (5.2) into (4.1) and using (4.2), (4. 4), 
and (5.3), we obtain 

Po (0'11 ~. 1 ~ 0'11 ) --+1/0+-TK-p-- ·x o 00 0 0 ax ,K 
,K 

P ( 0'11 ) * +.....Q 8k-PO~XK k Dk 
pO aDK' 

Po ( 0'11) * 0'11. + - JC k - Po ~X K k Bk + -- 0 K 
pO aBK' aO,K ' 

1 Po - ( ) + -QKO + -8·:J ~ O. 5.4 
02 ,K pO 

This inequality is valid for all independent variations of 
. * * O,i.'K,Dk,Bk and 0 K' Since it is linear in these quanti-
ties it cannot hold Unless 

and 

a '11 

0'11 
TK =Po--, 

aX,K 
a '11 

8 k = Po -=-XK, k 
aDK 

JC - P __ XK K - 0 asK ,k 

~=o ao ' ,K 

1 Po t.> --QKO K+ -0·:J ~ O. 
0 2 , pO 

We have therefore proven 

(5.5) 

(5.6) 

Theorem: The constitutive equations of local elastic 
solids are thermodynamically admissible if and only if 
they are of the form (5.5) subject to the conditions (5.6) 
[i.e., >II' is independent of 0 K' and QKand .9 satisfy the 
inequality of (5. 6)j,for all' independent processes. 

Next, we note that the equation of balance of moment of 
momentum (2.31), with f = 1= 0, is satisfied if 

(5.7) 

is a symmetric tensor, i.e., 

(5.8) 

where a square bracket enclosing indices indicates skew­
symmetric part and according to (5.5)2 and (4.2)4 

(5.9) 

Note that if we employ tkl = t lk , given by (5.7), we will 
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need no further reference to the balance of moment of 
momentum (2. 31a). 

Remark 1: We note that the selection of the equiva­
lent independent constitutive variables (x K' D K, B K, 0 
and 0 K) instead of (x, K' Dk, Bk, 0 and 0 K)' eliminates an 
argument on the invariance requiremeitt to be placed on 
>11'. If the second set is selected, the Clausius-Duhem 
inequality gives a set of partial differential equations 
whose solution is, as in purely mechanical case, the 
requirement of invariance under rigid body motions of 
the spatial frame of reference. This in turn indicates 
the use of the independent variables used above. 

Remark 2: In the dynamical theory of electromag­
netism, one must also impose the requirement of in­
variance under changes of inertial frames. A rigorous 
treatment of this question requires the relativistic 
treatment. To within an approximation v2/ c2 one can 
show that the variables Dk and Bk can be replaced by 
their relativistic expressions 

1 !I)=D+-uxH, 
c 

<B = B-lu x D. 
c 

(5.10) 

Remark 3: Different constitutive theories can be con­
structed employing other sets of E-M variables, e.g., 
(E, B), (D,H), etc. While each form may be more suitable 
for different types of bodies, (e.g ,dielectrics, magnetic 
materials) they are equivalent to the set (5.5). In fact, 
they can be transformed into one another by a Legendre 
transformation applied to the function 1/1. • 

6. NON LOCAL E-M ELASTIC SOLIDS 

Determination of the nonlocal constitutive equations of 
bodies requires the use of the full entropy inequality 
(3.5). Here we consider nonlocal elastic solids in which 
the mass production and heat conduction are not appre­
Ciable, i.e., we set 

p = 0, QK = 0, (6.1) 

so that (3.5) may be written as 

Po ...:.. . 1 . Po * * - - (1/1 + it· g + 01/) + -TK. X K + - (8· D + JC. B) 
o 0' pO 

(6.2) 
Po A Po A A Po A 

+ -f·v + -(8·:J + JC·b) + -(h - §) ~ 0, 
pO pO 0 

in'O-a. 

In accordance with the axiom of causality introduced in20, 
we now define a nonlocal E-M elastic solid by the con­
stitutive equations of form 

~(X., t) = 'I1[:Je(X'), :JeL(X') , !l)L(X'),CBL(X');x, X,K,I), 13, O,X), 

(6.3) 

where >II' is a scalar-valued function of x, x K' D, 13, 0, X 
and a functional of the difference functions' 

:Je(X') = x(X', t) - x(x, t), 

3C L (X') = X'L (X', f) - X,L (X, f), 

!I)(X') = D(X', t) - ~(X, t), 

<B(X') = B(X', t) - B(X, t), 

(6.4) 

defined over all material points X' of the body CB. Sim­
ilar equations are written for the dependent variables 
1/, TK, 8,3Cand 9, except that these are scalar-valued for 
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1/ and vector-valued functionals for the remaining de­
pendent variables. We assume that'i1 possesses contin­
uous first order partial derivatives with respect to 
x K,D,B, e and the Frechet partial derivatives21 with 
respect to 3<: (X'), 3<: L (X'), 2>(X/} and <B(X/), continuous of 
order zero. From (6.4) it is clear that 

3<: = 3<: L =:.\) = <B = 0, when X' = X (6. 5) 

since the dependences of 'i1 on the arguments x K' D and 
B are separately indicated, without loss in generality, we 
may also take 

'i1[0, o,o,o;x,x,K,D, B, e,X] == 1/1 0 (6.6) 

as the free energy of the local E-M elastic solids. This 
means that the junctional gradients of'll with respect to 
3<:(X') , 3<:L (XI), :,\)(X/} and <B(X') at X' = X vanish, i.e., 

Ow/03<:= Ow/a3<:L = ow/a:.\) = Ow/O<B = 0, at X' = X, 
(6.7) 

where 010 indicates functional (Frechet) partial deriva­
tive. 

We now calculate 

4t = aw .x + a'll 8 + ~.x + il.!,.:O + a.!,.jJ 
ax ae ax K ,K an aB , 

J aW • + ", ... ,[3<:(X'), •.. ,x,>.]· 3<:(A)dv(A) 
'0-0 UoI\. 

+ J Ow [3<:(X'),'" ,X,A].:icL(A)dv(A) 
'0 -0.,153<: L 

+ J 15'11 [3C(X'), ·",X,A]·:.\)(A)dv(1.) 
'0 -0 15:D 

+ J ~! [3<:(X'), .•. ,x, A]' cB(A)dV(A). 
'0-0 vw 

(6.8) 

We draw attention to the fact that the functional grad­
ients appearing in the integrals are also functions of a 
vector A. 

Substituting (6.8) into (6.2) we obtain 

Po ~ OW) Po ( OW). --g+- 'x-- 1/+- e 
e ax e e 

Po ~A J 15'11 ~ -- f - -dV(A) ·x e '0 -0 153t 

P.o A A Po A 

+-' (&'~+3C'b)+-(h-§)2:0 
pe e ' in'O-CJ. 

(6.9) 
. * * ......... This inequality is linear inx,e,x K,Dk andBk. H 8,b, 

hand § are independent of these quantities, then (6.9) 
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cannot be maintained for all possible variation of these 
independent quantities unless 

a'll 
1]=--, 

ae 

(lw I5w 
8 =p _XK _p. YK J -dV(A) (6.10) 

k 0 aD K ,k 0'" ,k '0 -0 I5:DK ' 

o~ I5w 
:Ie k = Po oBKXK ,k - pcJ(K ,k [-0 I5<B K dv(l.), in '0 - CJ 

and 

(6.11) 

We have thus proved 

Theorem: The constitutive eqUl.ltions oj nonlocal 
E-M elastic solids are thermodynamically admissible if 
and only ij they are oj the jorm (6.11) jor all independent 
processes. 

To achieve further progress, we need information re­
garding the nature of the free energy functional w. Mo­
tivated with the results of Sec. 4, we assume that g has 
the form (4.6) and ~ may be expressed as 

'i[1 = 1/1- v'g, (6.12) 

where 1/1 is independent of v. 

Upon employing (6.12) in (6.11) and reFalling the ex­
pressions (2.10c) and (2. 38l of 8 and 8. the argument on 
the linearity of (6.11) in x (h and § are assumed to be 
independent of x) leads to 

h 1 J I5w f = -(q + q)& + -dv(A) 
e '0-0 03<: 

(6.13) 

and 

Po &. (J + j - .go) + PO:re. b+ Po 3C. b + Po (h _ §) 
pe pe pe e 

- Po J [I5W 'X(A) + I5w 'x K(A) + Ow XK J)k(>..) 
e '0 -0 03<: 153<: K' O:DK , 

Ow * J + --X K kBk(>..) dv(l.) 2: 0, 
O<B K , 

in '0 - CJ. (6.14) 

The constitutive equation for the conduction current 
J c == J - '0 cannot be derived from (6.14), but must be 
written as a separate equation 

J c = 8[3C(X'), 3<:L(X'),:DL (X'),<BL (X');x,x K,D,B,e,X] , 

subject to the restrictions arising from (6.14). 
(6.15) 
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The constitutive equations (6.10), together with (6.12) 
and (6.13),are now given by 

0+ 
g = (D x B)/pc, TJ=-a/i' (6.16a) 

- 1 J 0+ dV(A) (6. 16b) f = - (q + fj)8 + 
p v -0 oX ' 

(6. 16c) 

(6. 16d) 

(6.16e) 

we now substitute (6.16) into the energy equation (2. 32a) 
in its material form, and employ (4.2), (3. 4), and (5.3). 
This results in 

Po A Po A J [0+ PoB~ - -8· (J + J) - -JC'b + Po - 'x(A) 
P p V-a oX 

+ 0+ .:it K(A) + 1i+ • D(A) + o-p • m(A)]dV(A) (6.17) 
oX K ' ~ 0(B 

- po(h - It) = 0, in '0 - (1. 

This is but another form of the energy equation. 
There remains the question of invariance requirements 
of the constitutive functionals. In this regard we may 
employ the Galilean invariance of the response function­
also This is expressed by the form invariance of res­
ponse functions under all class of motions of the form 

x(X', t) ~ Qx(X', t) + vot + b o' (6.18) 

when Q, v 0' and bo are independent of time and 

QQT =QTQ =1, det Q = 1. (6.19) 

Mathematically, 

+[3C(X'), 3C L(X'),~(X'),(B(X') ;x,K,D,B, B,X] 

= + [Q3C (X') ,QXL (X'), ~(X'), Q<B(X'); Qx,K' D, 13, B, X]. 
(6.20) 

If the relativistic effects are neglected, then the mechani­
cal and E - M balance laws are known to be invariant 
under (6.18). While for time dependent rotations (Q = 
Q(t» and accelerating frames (b = b(t» the invariance 
requirements under (6.18) fail to apply to E-M quanti­
ties, here we impose much milder conditions (constant 
velocities of rotation and translations). For E-M fluids 
and memory dependent materials, it is necessary to 
employ the principle of objectivity in relativistic form. 
This invariance requirement can be used to restrict 
Eqs. (6.16) further. Moreover, if the energy equation 
(6.17) is posited to be invariant under Galilean trans­
formations we can determine the form of h, similar to 
Ref. 10. However, since we are not interested in the 
thermal and dissipative aspects of this problem, we do 
not pursue this question further. 
To complete the constitutive theory, it remains to satis­
fy the condition 

J p'fdv = O. (6.21) 
v -0 

This can be achieved by selecting 1/1 in the form 

1/1 = ijJ + A· f 3C(A)dv(A) , (6.22) 
v -0 
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where A is a constant vector and ijJ is a functional of the 
same type as 1/1. Upon substituting (6.22) into (6. 16c) 
and the result into (6.21), we obtain 

A = _1- f (q + fj)8dv(x) _1- J pdv(A) f 
M v -0 M v -0 v -0 

0+ dv(A) 
ax ' 

(6.23) 
where M is the total mass of the body. With A given by 
(6.23), the condition (6.21) is satisfied. The free energy 
given by (6.22) can be used in the remaining Eqs. of 
(6.16). It is clear that the forms of the remaining equa­
tions do not change except that 1/1 is replaced by iii. 
A remark on the nature of nonlocal effects, represented 
by the integrals in (6.16), is in order: It is well known 
that the intermolecular forces attenuate rapidly with the 
distance. In fact, the success of the local continuum 
theories is, primarily, due to this fact and due to the 
consideration of a limited class of phenomenological 
effects for which typical size is much larger than atomic 
and molecular distances composing the materials. In 
the transmission of waves, for example, when the wave 
length of the Signal becomes comparable with the gran­
ular or atomic distances, local theories of continua fail 
to apply. In this range we must employ nonlocal theories. 
The strong molecular interactions, however, permit us 
to consider only a small neighborhood of the point of 
observation. In a continuum theory this notion may be 
formalized by certain strong continuity reqUirements on 
the constitutive functionals. To this end we have pre­
viously introduced the hypothesis of attenuating neigh­
barhood. 20 This hypotheSiS will place restrictions on 
the kernels appearing in the integrals of (6.16) so that 
the kernels decay rapidly with distance. For a precise 
statement of this hypotheSiS we make reference to 
Ref. 20 and for the application of this idea to nonlocal 
elasticity to Ref. 10. In a forthcoming paper we shall 
employ the dispersion of E-M waves to determine the 
exact forms of some of these kernels. 
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Branching rules for U(N);:) U(M) and the evaluation of 
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Littlewood's third method of evaluating plethysms is generalized by noting that plethysms determine 
the branching rules associated with the subgroup decomposition U(N):J U(M), and by making use 
of the well-known branching rule for U(M) :J U(M -I). This generalization leads to recurrence 
formulas which are simpler than those due to Murnaghan and to a new method of evaluating 
plethysms which is free of the ambiguities inherent in the use of Littlewood's third method. 

1. INTRODUCTION 
Since Littlewood first defined a new multiplication of S 
functions 1 which he called the operation of plethysm,2 
many methods have been developed to evaluate such pro­
ducts. Littlewood himself suggested three methods. 3 
The third of these proved to be the most effective and 
forms the basis for the calculations of Ibrahim 4 who de­
rived an array of prinCipal part theorems 5 to eliminate 
the ambiguities that occur in the calculations. 

The plethysm {A} lSi {J.t} may be identified6 with the 
branching rule for the decomposition of an irreducible 
representation of U(N) associated with the S function {J.t} 
into irreducible representations of U(M), where the S 
function {A} is associated with an irreducible represen­
tation of U(M) of dimension N which defines the em­
bedding of U(M) in U(JV). This identification has pre­
viously been exploited in the evaulation of plethysms 7 by 
a technique involving the use of the weight spaces asso­
ciated with U(M) and U(N). The aim in this paper is to 
use the same identification to derive, without any use of 
weights, recurrence formulas for plethysms. 

It is, of course, this identification which gives plethysms 
an important role to play in the study of a number of 
phySical problems. This was first recognised by 
Elliott 8 who used Ibrahim'S tables of plethysms to esta­
blish the branching rules for the decomposition U(JV) ~ 
U(3). These results were then used in the study of the 
SU(3) shell model of nuclei. In atomic spectroscopy 
plethysms have come to play an increasingly important 
role both in the resolution of the Kronecker squares of 
irreducible representations with application to the deter­
mination of selection rules,9 and more generally in the 
classification of the atomic states of many electron con­
figurations, the analysis and classification of the many 
particle operators of atomic theory, and the derivation of 
selection rules for the matrix elements of these opera­
tors. lO 

In Sec. 2 the well-known branching rule ll associated 
with the embedding of U(M - 1) in U(M) is used to 
generalize Littlewood's third method in a manner appro­
priate to the removal of ambiguities from the calcula­
tion. The application of conjugacy theorems3 in Sec. 3 
then leads to a derivation of two formulas similar to 
those of Murnaghan12 which formed the basis of an ear­
lier calculation of plethysms,13 However, the new for­
mulas are simpler to use. 

Finally, in Sec. 4 the general result obtained in Sec. 2 is 
inverted so as to give a direct method of evaluating 
plethysms free of any ambiguity. 

2. GENERALIZATION OF LITTLEWOOD'S 
THIRD METHOD 

The algebra of S functions (Ref. 2, p. 290;Ref. 3) is well 
established, but the duality that exists between S func-
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tions and the irreducible representations of the classical 
groups has not been fully exploited. This duality is such 
that if {A} is an S function associated with an irreducible 
representation of U(M) of dimension N, then an embed­
ding of U(M) in U(N) may be defined by the mapping 

{I} ~ {A}. (2.1) 

Under this mapping every S function {Il}, associated with 
an irreducible representation of U(N), decomposes in 
accordance with the branching rule6 

(2.2) 

where {A} lSi {Il} is an outer plethysm of S functions and 
{II} is an S-function associated with an irreducible re­
presentation of U(M). If {A}, {j.L} and {II} correspond 
to partitions (A), (j.L) and (II) of 1, m and n into p, q and r 
parts, respectively, then n = 1m and r :5 pm. It is con­
venient to call 1, m, and nand p, 'I, and r the degrees and 
depths of the S functions {A}, {J.t J , and {II}. 

The determination of the coefficients Gfr corresponds to 
the evaluation of the plethysm {A} lSi {j.L}. These coeffi­
cients are independent of M and N even though the 
branching rule (2. 2) for UWl ~ U(M) may be M -inde­
pendent in the sense that if {II} has a depth, r, greater 
than M, then the corresponding irreducible representa­
tion is zero. 

The canonical embedding of U(M - 1) in U(M) is defined 
by the mapping 

{I} ~ {I} + {OJ, 

which leads through the algebra of plethysm to the 
branching rule 

n 
{II} ~ ({1} + {OJ) lSi {II} = 6{1I}/{a}. 

a=O 

(2.3) 

(2.4) 

The notation is such that Latin letters are used to de­
note partitions into one part only, while Greek letters de­
note general partitions. Thus {a} is of degree a and 
depth 1. The evaluation of the quotient (Ref. 2, p. 110) of 
S functions {II}/{a} to give a sum of S functions of degree 
n - a leads directly to the well known branching rule 
(Ref.H, p. 391) appropriate to U(M) ~ U(M - 1). 

The mapping (2. 1) and the branching rule (2.4) define an 
embedding of U(M - 1) in UWl which is such that 

(2.5) 

while successive application of (2.2) and (2.4) imply that 
for this same embedding 
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(2.6) 

Therefore, 

(2.7) 

This result is an identity involving S functions, and al­
though its derivation depends upon the relationship be­
tween S functions and irreducible representations of 
unitary groups, the result is independent of M and N. 

Expanding both the left and right hand sides of (2.7) into 
terms containing S-functions of a given degree then 
yields the set of identities 

{x} 0 {IL} = {x} 0 {IJ.}, (2.8a) 

({x} 0 {1J.})/{1} = {x} 0 ({/l}/{1}) • ({X}/{l}), (2.8b) 

({x} 0 {1J.})/{2} = {x} 0 ({1J.}/{1}) • ({X}/{2}) 
+ {x} 0 ({ IJ.} /{2}) . ({x} /{1}) 0 {2} 

+ {x} 0 ({1J.}/{1 2 }) • ({X}/{l}) 0 {12}, 

(2.8c) 
etc. 

Equation (2.8b) forms the basis of Littlewood's third 
method of calculating plethysms (Ref. 2, p. 291; Ref. 3) 
which depends upon the fact that if sufficient plethysms 
are known to enable the right-hand side of (2.8b) to be 
evaluated, then it may be possible, from the resulting 
expression for ({x} 0 {IJ.I)/{l}, to establish the plethysm 
{X I 0 {IJ.}. It is this last step which involves a certain 
amount of trial and error and leads to ambiguities. 

For example, assuming that {2} 0 {2} = {4} + {22}, it 
follows from (2.8b) that 

({2} 0 {3})/{1} = ({4} + {22}) . {1} 

= {5} + {41} + {32} + {221}. (2.9) 

However, 

({6} + {42} + {23})/{1} = {5} + {41} + {32} + {221} 

and 

({51} + {3 2} + {23})/{1} = {5} + {41} + {32} + {221}, 

so that {2} 0 {3} is not uniquely determined by the use 
of (2.8b) 

In this example, application of (2. 8c) gives 

({2} 0 {3})/{2} = 2{4} + {31} + 2{22}. (2.10) 

Since 

({6} + {42} + {23})/{2} = 2{4} + {31} + 2{22} , 

while 

({51} + {3 2} + {23})/{2} = {4} + 2{31} + {22}, 

it then follows that 

{2} 0 {3} = {6} + {42} + {23}. (2.11) 

It is clear from this example that (2.7) provides a way 
of generalizing Littlewood's third method of calculating 
plethysms through the use of the set of identities (2.8). 
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3. COMPARISON WITH MURNAGHAN'S FORMULAS 

Application of the general result (2.7) to the cases for 
which {x} = {ll} and either {IJ.} = {m} or {IJ.} = {1m} 
leads to the very simple identities 

1m 

6 ({1 1} 0 {m})/{a} = ({1l} + {ll-l}) 0 {m}, (3.1a) 
a=O 

1m 

6 ({1 1} 0 {l m})/{a} = ({1 1} + {ll-l}) 0 {1 m}. 
a=O (3.1b) 

Expanding the right hand sides of these equations then 
gives, for the terms of degree 1m - a, 

({1 1} 0 {m})/{a} = {ll} 0 {m - a} . {1l-1} 0 {a}, 

({1 1} 0 {l m})/{a} = {1 1} 0 {1 m - a} • {1 1- 1} 0 {la}. 
(3.2a) 

(3.2b) 

It follows from Littlewood's theorem of conjugates3 that 

({1} 0 {m})/{la} = {1} 0 {m - a} • {1- 1} 0 {la}, 
(3.3a) 

({1} 0 {l m }/{l a} = {I} 0 {1 m-a} • {1-1} 0 {a}. 
(3.3b) 

The cases a > m lead immediatelr to the obvious result 
that neither {1} 0 {m} nor {1} 0 i1 m} contain S func­
tions of depth greater than m. Setting a = m in (3.3) 
then yields the results 

({1} 0 {m} /{1 m} = {I - 1} 0 {1 m}, 

({I} 0 {lm}/{lm} = {1 -1} 0 {m}, 

(3.4a) 

(3.4b) 

which determine uniquely the terms of depth m in the 
expansion of {I} 0 {m} and {1} 0 {1m}, since only these 
terms give any contribution to the left hand sides of (3.4) 
and these terms have a one-to-one correspondence with 
those of these quotients. 

Setting a = m - 1 in (3.3) then yields eguations which 
give the terms of {1} 0 {m} and {I} 0 t1m} of depth 
m - 1, the process may clearly be continued. The com­
putation may be simplified by noting that terms of depth 
greater than m - c may be omitted when solving for 
those of depth m - c. 

Using the notation12 

if r = k 
(3.5) 

if r ;r. k, 

where r is the depth of {II}, the above procedure gives 

e 
[{I} 0 {m}]m-c = 6 (- l)a{l} 0 {c - a} 

a=O 

• {l-l} 0 {l m - c+a} . {l a}, (3.6a) 

c 

[{1} 0 {l m}]m_c = 6 (-l)a{l} 0 {l e-a} 
a=O 

. {1-1} 0{m-c+a}· {l a}, (3.6b) 

where on the right-hand side of these equations all S 
functions of depth greater than m - c may be omitted. 

For example, 

[{2} 0 {3}b = {1} 0 {13} = {13} + "', 
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[{2} 0 {3}h = {2} 0 {I} . {I} 0 {12} 

- {I} 0 {13} . {I} = {31} + ... , 

[{2} 0 {3}h = {2} 0 {2} . {I} 0 {I} - {2} 0 {I} 

. {I} 0 {12}. {I} + {I} 0 {13} . {12} = {5} + ... , 
(3.7) 

where the dots indicates S functions of depth greater than 
m - c. Therefore, 

{2} 0 {3} = {6} + {42} + {23} (3.8) 

in agreement with (2.11). 

The Eqs. (3. 6) bear a striking resemblance to the very 
useful results of Murnaghan.12 However, they are sim­
pler in that fewer terms occur on the right hand side of 
(3.6) than in the expressions of Murnaghan. 

4. A FORMULA FOR PLETHYSM COEFFICIENTS 

In deriving the results of Secs. 2 and 3, the key formula 
is (2.7) which was obtained by a consideration of the 
branching rules appropriate to the subgroup chain 
U(N) :::) U(NJ) :::) U(NJ - 1). To proceed further, it is 
necessary to consider the last link in this chain in more 
detail. 

Just as (2. 3) leads through the algebra of plethysm to 
the relation (2.4) appropriate to U(M) J, U(M - 1), so 
the inverse of (2.3) given by 

{I} ~ {I} - {o} (4.1) 

leads to the relation 
t 

{r} ~ ({I} - {o}) 0 {r} = L; (-l)b{r}/{l b} (4.2) 
b~O 

appropriate to U(M - 1) l' U(M). The arrows J, and l' 
correspond to the processes of subduction and induction 
respectively. 

TABLE I. The subduction coefficients. H,i . associated with U(M) 1 U(M -1): 

~ 

~ ~ ~ -- ~ '" --~ 'N' '" ~ .-< " -- .-< '" - .,. - (0') N .-< ..,. (0') N N -
{ v} 

..... "" "" '" '" '" .; .; .; .; .; 
I --'" --::, --::, --::, --::, --::, ~ --::, " " -.- -.- -.- --
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If 
s 
L;{a}/{a} = L;HJ{r} (4.3) 
a~O r 

and 
t 
L;(-l)b{r}/{lb}=L;K~{a}, (4.4) 
b~O 0 

it is clear that the matrix K is the inverse of the matrix 
H. The matrix elements of Hand K, derived from (4.3) 
and (4.4), are given in Tables I and II for s ~ 5, t ~ 5. It 
is to be noted that K~ = (- 1) s-t H$ where {a} and {r} 
are the S functions conjugate to {aJ and {r}. 
An arbitrary set of S functions, each of weight n, asso­
ciated with a set of irreducible representations of 
U(M) corresponds to another set of S functions, each of 
degree less than or equal to n, associated with the sub­
duced representations of U(M - 1). That is, for all 
coefficients Av there exist a set of coefficients Bo such 
that under U(M) J, U(M - 1) 

L;A v{II}-7L;Bo{a} (4.5) 
v 0 

with s ~ n. In fact, from (2.4) and (4.3) 

Bo = L;AvH~. (4.6) 
v 

However, if 

it is easy to see that 

H~ = HJ (4.8) 

so that, with the notation of (4.7), Table I gives the trans­
pose of the matrix associated with the branching rule 

{II} -7 L; H~ {a}. (4.9) 
o 

{a} -) L; H~{ T} and { v} -, L;H~{o}. 
T " 

~ ~ --~ ~ '" - " --~ - N .-< N ;::; en 

'" 
..,. (0') (0') N -on on on on on on on 

'" -- -.- -.- -- -.- -.-

{ r} 
{oJ {OJ {I} {2} {12} {3} {21} {!3} {4} {31} {22} {212} {14} {5} {41} {32} {312} {221} {2P} {!5} 

{OJ 

{1} 

{2} 
{I2} 

{3} 
{21} 
{1 3 } 
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TABLE II. The induction coefficients K~ associated with U(M ~ 1) r U(M): {r} -> L; K~ {cr} and 

L;Av{v} = L;K~Bo{v} --> L Bu{a}. 
LJ l'o (J 

{ v} 
{ cr} 

{r} {oJ {1} {2} {12} {3} {21}{13} {4} {31} {22}{2t2} {14} {5}{41}{32}{3t2} {221} {2!3} {ts} 

in} {oJ 

{n ~ 1, 1} {1} ~ 1 1 

{n ~ 2, 2} 
{n~2,12} 

{n~3,3} 
{n~3,21} 
{n ~ 3, 13} 

{n ~ 4, 4} 

in ~ 4, 31~ 
n ~ 4, 22 

{n ~ 4, 2t2} 
{n ~ 4, 14} 

{n~5,5} 
{n~5,41} 
{n~5,32} 
{n ~ 5, 312} 

{2} 
{12} 

{3} 
{21} 
{!3} 

{4} 

g~~ 
{2t2} 
14} 

{5} 
{41} 

132
} 312} 

~1 1 
~1 

~1 

~ 1 ~ 1 
~ 1 ~ 1 

~ 1 1 
~1 

~1 

~1 

~ 1 ~ 1 
~1 

~ 1 ~ 1 
~1 

~1 

~ 1 ~ 1 
~1 

~1 

~1 

~1 

~ 1 ~ 1 {n ~ 5, 221~ 
{n ~ 5, 213 

{221} 
213 

{n~5,iS} {is} ~ 1 1 

~1 

~ 1 ~ 1 
~1 

~ 1 ~ 1 
~1 

The columns of the table are labelled in such a way as 
to indicate this. For given n the columns have to be 
suitable extended of course, while for small n some 
columns may be irrelevant. 

Making use of (4.8) in (4.6), together with the fact that 
K = H-l, yields the result 

(4.10) 
a 

It should be stressed that in this equation {v} and {r} 
are related by (4.7) so that t < n. This implies that for 
a given value of n the only information required to deter­
mine the left hand side of (4.5) is that given by a know­
ledge of the coefficients Ba with s < n. The relevant 
transformation matrix is the matrix K of Table II in 
which the rows are labelled both by {v} and by {r}. 

Returning to the problem of evaluating plethysms, the 
result (2. 7) implies in the notation of (2. 2) that under 
U(M) J. U(M - 1) 

~G~fl {v} ~ ct {i\} I{a}) 0 {J.L} = ~ F~fl {a}, (4.11) 

where clearly F~fl = G~1l and the remaining coefficients 
F1fl with s < n may be evaluated from a knowledge of 
plethysms of the type {7f} 0 {p} with either p < 1, 
r ::s m or p::s l, r < m, i.e., plethysms of degree lower 
than {i\} 0 {J.L}. 
The branching rule (4.11) is an example of the relation 
(4.5), and using (4.10) and (4.4) gives the formula 

t 
GV = ~(_l)bFT/lb (4.12) 

)..fl b=O All ' 

where {v} and {r} are related by (4.7) and r II b denotes 
the S function quotient { r} 1{1 b}. 
This formula (4.12) enables any plethysm {i\} 0 {J.L} to 
be evaluated unambiguously in terms of plethysms of 
lower degree. As an example, (4.11) implies that 

~ Ft2}{3} {a} = ({2} + {I} + {a}) 0 {3} 
a 

= {2} 0{3} + {5} + {41} + {32} + {22 1} + 2{4} + {31} 

+ 2{22} + 2{3} + {21} + 2{2} + {I} + {o}, (4.13) 

J. Math. Phys., Vol. 14, No.6, June 1973 

where use has been made of the algebra of plethysms 
and a knowledge of some plethsyms of degree less than 
6. The plethysm coefficients G{2}{3} are then found by 
multiplying by K the column matrix whose elements 

1 120 2 1 021 200 1 1 101 0 0 (4.14) 

are the coefficients of the S function {a} appearing in 
(4.13) with s ::s 5. It is then clear that 

{2} 0 {3} = {6} + {42} + {23} (4.15) 

in agreement with (2.11) and (3.8). 

It is worth noting that the general structure of the 
matrices Hand K is such that G~fl = 0 if FIfl = 0, and 
that the only terms of (4.11) which are relevant are 
those for which al ~ n - s. For example only the last 
six terms of (4.13) are relevant, so that the list (4.14) 
need be continued no further than the tenth element. 
Fruthermore it follows immediately from the absence 
of the S functions {12}. {13}. {212} and {14} in (4.13) that 
the S functions {412} , {313} {22 12} and {214} are not con­
tained in {2} 0 {3}. 

Clearly, even noting these pOints, the formula (4.12) 
does not provide the most rapid method of calculating 
the plethysm {2} 0 {3}. However, the great merits of 
the formula lie in the fact that it is completely general 
and free of any ambiguity. 
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Oscillator phase states, thermal equilibrium and group 
representations * 

Y. Aharonovt, E. C. Lerner*, H. W. Huang, and J. M. Knight 

Physics Department, University of South Carolina, Columbia, South Carolina 29208 

Eigenstates of the annihilation type operator U = C + is, where C and S are the "cosine" and 
"sine" operators for harmonic oscillator phase, are shown to be closely related to thermal 
equilibrium states of the oscillator and to provide a new interpretation of the thermal equilibrium 
density operator. The problem of creating such states is considered and a general theorem is 
established leading to the construction of interaction Hamiltonians which transform the eigenstates of 
U among themselves and, in particular, create them from the oscillator ground state. These 
Hamiltonians lead to representations of the Lie algebras of 0(2, I) and 0(3). It is suggested that the 
mathematical technique used, in which generalized U -type operators provide the link between a 
group and its representations, has its own intrinsic interest for the study of Lie groups. 

1. INTRODUCTION 

In studying the quantum theory of harmonic oscillator 
phase, new Hermitian operators C and S were intro­
duced l - 7 whose spectra coincide with the range of 
values of the trigonometric functions cos¢ and sin¢. 
Since these operators do not commute with one another, 
one cannot prepare a state in which the phase is arbi­
trarily sharply defined except in certain limiting cases. 
However, one might expect that the operator U =- C + is, 
which is the quantum analog of the quantity e i '" =- cos¢ + 
i sin¢, would define states of maximal phase resolution 
in some reasonable sense. 

The eigenstates of U, referred to here as the phase 
states, have been studied,7 and not only provide a physi­
cally reasonable description of phase, but also possess 
other interesting physical properties. These properties 
stem from the close relationship between phase states 
and the description of an oscillator in thermal equili­
brium with its surroundings, a relationship in which the 
classical concept of oscillator phase plays an important 
role. 

As an example, consider an oscillator of natural fre­
quency w in thermal equilibrium at a temperature T. 
Then the statistical average of the oscillator energy can 
be shown to be equal to a pure quantum expectation 
value in a suitable phase state. This implies that mea­
surement of the oscillator energy cannot distinguish a 
phase state from a thermal eqUilibrium mixture. The 
expectation value of any other oscillator observable is 
obtained by uniform averaging of its quantum expectation 
value in such a state over a single parameter which, in 
the limit kT » tiw, is identifiable as the classical phase 
of the oscillator. 

Therefore, although the density operator formalism 
makes it clear that thermal equilibrium cannot be des­
cribed by a pure quantum state, the phase states provide 
as close a description as one might hope for within the 
pure state framework. The additional randomness asso­
ciated with thermal equilibrium is represented by a uni­
form distribution over the phase parameter associated 
with the state. 

In view of the foregoing remarks, it becomes a matter of 
considerable interest to examine the possibility of find­
ing a physical model for the creation of a phase state. 
In this model the oscillator would be part of a well­
defined larger dynamical system, the effect of which 
would be to subject it to an interaction which would take 
it from its ground state, for example, to a phase state. 
Such a model would conceivably have the interesting 
property of exhibiting, within the framework of pure 
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quantum dynamics, a process very closely related to 
the approach to thermal equilibrium. 

An obvious first step in the search for this model is to 
find interaction Hamiltonians which generate phase 
states. The formulation and solution of this problem 
form the bulk of the present paper. In developing the 
mathematical techniques for this purpose, we find that 
the desired Hamiltonians form a representation of a Lie 
algebra. The elements of the group generated by this 
algebra are identified with transformations of the spec­
trum of the operator U, which in turn acts in the under­
lying space of the representation. We believe that this 
linking of the group with its representation via an opera­
tor is of sufficient generality to be of intrinsic interest 
for the study of group representations. 

This paper is therefore one of largely mathematical 
nature, motivated and guided by physical considerations. 
The emergence of a possible new approach to the study 
of Lie groups was quite unforseen at the outset. We 
therefore do not include here attempts to extend our 
approach beyond the groups 0(2, 1) and 0(3) which arise 
naturally in our treatment of harmonic oscillator dyna­
mics. These further efforts will be the subject of a 
future paper. 

In Sec. 2, the relation indicated above between the statis­
tics of an oscillator in thermal equilibrium and the 
phase states is established. A brief discussion of the 
properties of these states and of the operators defining 
them is included here and in the following section. 
Further clarification of their Significance as phase 
states is provided by examining them in the classical 
limit and showing that they have just the interpretation 
one would expect in terms of an ensemble in phase 
space. 

Section 3 is concerned with the formulation and solution 
of the problem of finding the Hamiltonians that generate 
phase states. The formulation is achieved by establish­
ing a general theorem which characterizes those Hamil­
tonians which transform the eigenstates of an operator 
of the type U into themselves. This leads to a whole 
class of operators A(k) parametrized by a real variable 
k and including the operator U itself. For each value of 
k, there is a set of allowable Hamiltonians H(k). It fol­
lows from the general conditions of our theorem that 
the H(k) constitute a representation of a Lie algebra, 
which turns out to be essentially that of 0(2, 1). We 
show also that the familiar destruction operator, whose 
eigenstates are the coherent states, is a member of our 
class in the limit k ~ 00. We thus refer to the operators 
A(k) as generalized destruction operators. 

Copyright © 1973 by the American Institute of PhYSics 746 
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In Sec. 4 we explicitly exhibit the general form of the 
unitary transformations which the H(k) induce on the 
A(k) eigenstates. It is seen that the eigenvalues of A(k) 
undergo linear fractional transformations. For a given 
k, these transformations can be classified into two 
types. In one, the eigenvalues vary periodically in time; 
in the other they display the interesting property of 
approaching a given limit as t -7 <Xl independently of 
their initial values. 

In the last two sections, we take up the group theoretic 
aspects of our work. In Sec. 5, we show that an exten­
sion of the range of the parameter k allows us to gene­
ralize the methods of Sec. 3 to include 0(3) as well as 
0(2, 1). By a slight broadening of the concept of eigen­
state, we are able to retain the useful transformation 
properties of the eigenstates of the generalized destruc­
tion operator even in the finite dimensional subspaces 
which support representations of 0(3). In the final sec­
tion, after identifying the relevant representations of 
0(3) and 0(2, 1), we give some characterization of the 
phase states from the point of view of the theory of 
group representations. The section closes with a dis­
cussion of the derivation of the explicit forms of the 
matrix representation of the group by means of our 
formalism. 

2. PHASE STATES AND THERMAL EQUILIBRIUM 

Consider an oscillator which has been brought into ther­
mal contact with a heat bath of temperature T = (k{3)-l 
and allowed to reach equilibrium. If the contact is then 
broken and the oscillator allowed to evolve as an iso­
lated system, its state is represented by the thermal 
density operator 

co 

p=(1_e-811w ) 6 e-n 811w ln)(nl, (2.1) 
n=O 

where the 1 n) are orthonormal eigenstates of the num­
ber operator N = a+a • 

Formally, we may exhibit a pure quantum state which, 
for observables diagonal on the oscillator number basis, 
gives the same expectation values as are obtained from 
the thermal denSity operator. This state is 

00 

6 e-nB 11 w/2 In). (2.2) 
n=O 

As an example, the familiar result for the average value 
of the number operator, 

(N) = 1/(e 811w - 1) (2.3) 

is obtained as a pure quantum expectation value. For 
general observables, we may make use of the time de­
pendent state associated with (2.2), 

00 

11/1 B (t) = v'1 - e- 811 w L; e-nBlI w/2-inwt 1 n) , (2.4) 
n=O 

to obtain p by time averaging over the OSCillator period 
r: 

(2.5) 

These somewhat formal constructs acquire a more tan­
gible Significance from the fact that, for the classical 
OSCillator, averaging over a period is equivalent to ave­
raging over a completely random phase. With this in 
mind, we rewrite Eq. (2.5) as 

(2.6) 
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with 11/1 B (cf») defined by 
00 

11/1 B (cf») = h - e- BlIw L; e-nB'Kw/2 einC/J 1 n). (2.7) 
n=O 

Thus, the time averaging of Eq. (2. 5) is replaced by an 
averaging over a set of time independent states para­
metrized by the quantity cf> • 

Of course, the resemblance of Eq. (2. 6) to classical 
phase averaging does not guarantee that cf> is related to 
the phase. The relation can be established, however, on 
the basis of a previously published mathematical analy­
sis7 of oscillator phase operators in which new states 
of the oscillator, the phase states, were introduced. 
These are eigenstates of the operator U = C + is, where 
C and S are the "cosine" and "sine" operators and satis­
fy 

[C,N] = is, [S,N] = - iC, (2.8) 

or 

[U,N] = U. (2.9) 

The simplest choice for U, namely, U = E, the unit shift 
operator, defined by 

E 1 n) = (1 - 0on) 1 n - 1), (2.10) 

leads to phase states of precisely the form (2.7) with 
the eigenvalue z identified as 

z = Iz 1 eiC/J = e i </l-B1iw/2 

= j[N) eiC/J. 
J (N)+i. (2.11) 

Thus the averaging in Eq. (2. 6) is carried out with res­
pect to a parameter which, in the limit (N) -7 00 (i.e., 
f31'iw ~ 1, or 1 z 1 -71), is formally identifiable with the 
classical oscillator phase. s 

This formal identification of cf> with the classical phase 
can be made intuitive by noting the following behavior, 
which is established mathematically in the Appendix: 
for cf> = 0, the expectation value of the coordinate (q) 
becomes indefinitely large with large (N). Furthermore, 
the fractional uncertainty oq /( q) approaches a nonzero 
constant value less than unity. Therefore,oq also be­
comes very large, but remains less than (q), indicating 
that the probability distribution covers primarily the 
positive real axis. 9 At the same time, the expectation 
value of the momentum (p) vanishes, and the uncertainty 
op becomes vanishingly small as (N) becomes infinite. 
Thus p is sharply defined about zero. When cf> = 'IT /2, 
the roles of p and q are reversed, with the p distribu­
tion being smeared out over positive values and q being 
sharply defined about the origin. 

More descriptively, we can picture a claSSical ensemble 
of oscillators with different amplitudes but identical 
phases. Thus, cf> = 0 sees them strung out to the right of 
the origin and at rest, while cf> = 'IT /2 sees them all loca­
ted at the origin with different momenta, but moving in 
the same direction. 

The phase states differ in this respect from the well­
known coherent states, which are eigenstates of the anni­
hilation operator with eigenvalue a, expressible as 

a = (1/v'2)(q) + i(p») = -f\N) eiC/J. (2. 12) 

Here the parameter cf> also becomes interpretable3 as 
the phase of the oscillator in the limit of large (N). But 
in this case, all the dynamical quantities, q,p,N, etc., 
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become essentially classical, having fractic lal uncer­
tainties which vanish in this limit. The classical beha­
vior is evidenced by the fact, shown by Glauber,10 that 
the thermal density operator (2. 6) can be expressed in 
terms of the coherent states as11 

(2.13) 

The distribution function in Eq. (2. 13) is Gaussian, as 
one would expect classically. In the limit of small {3, it 
goes over into the Boltzman function and becomes in­
terpretable as a'probability distribution.1o 

In analogous fashion, the uniform distribution over cp in 
Eq. (2. 6) becomes interpretable as a uniform probability 
distribution in phase for large (N). The distinguishing 
property of the phase states is that, for them, only the 
phase becomes classically definable, the other quantities 
retaining finite fractional uncertainties. Thus the den­
sity operator acquires a new interpretation. The statis­
tics associated with phase independent variables, such 
as the energy, are purely quantum-mechanical, while 
the total statistical picture emerges as a result of uni­
form phase averaging. 

In view of this close relationship between phase states 
and thermal averaging, it becomes a matter of consider­
able interest to find a model in which these states are 
generated as a result of some interaction. It is with this 
aim in mind that we undertake in this paper a general 
mathematical formulation of the problem of finding 
Hamiltonians which generate states of this type from 
the ground state and transform them into one another. 

3. GENERAL FORMULATION 

We begin by noting12 that the phase states form a non­
degenerate,overcomplete set of eigenstates of the non­
unitary shift operator E, whose spectrum consists of 
the unit circle in the complex plane. An interior point 
z of the circle corresponds to a phase state 

0() 

Iz) = ../1- I z 12 ~ zn In) • (3.1) 
n=O 

These properties bear a strong resemblance to those of 
the coherent states, where the relevant shift operator is 
the familiar annihilation operator Em, and the spec­
trum consists of the entire complex plane. 

An important feature of the coherent states is that they 
retain their character as eigenstates of the annihilation 
operator under the influence of linear, c-number driving 
forces, that is, the class of Hamiltonians of the form 

(3.2) 

generates unitary transformations of these states into 
themselves. 

In seeking analogous Hamiltonians for the phases states 
we were led to the following general formulation of the 
problem: 

(i) Consider an annihilation type operator A = EF(N), 
so that 

A In) = F(n) In - 1) (3.3) 

with F(O) = 0, but F(n) nonvanishing for n ;;r. O. There is 
no loss of generality in assuming F(n) to be real and 
positive. 7 We assume further than F(n) converges to a 
finite nonzero limit as n -7 co. A solution of the eigen­
value equation 

A II a) = a II a) (3.4) 
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is given by 
00 

II a) = I 0) + L; n an In), 
n=1 

mI}l F(m) 

(3.5) 

in which we assume that the F(n) are such that II a) is 
normalizable for I a I < R where R is some nonzero 
positive constant. The double bar notation is used to 
denote states with the normalization (3. 5) in which the 
coefficient of the ground state is unity and the coeffi­
cients of the other states are analytic in a. The eigen­
state with unit norm is denoted by I a). The spectrum 7 

of A then consists of the interior and circumference of 
a circle of radius R in the complex plane. The states 
II a) form a nondegenerate, overcomplete13 set. 

(ii) We now show that a necessary and sufficient condi­
tion that a Hamiltonian H generates transformations of 
the II a) into themselves is that14 

[A,H] = f(A), (3.6) 

where the notation f (A) is understood to mean that the 
eigenstates of A are also eigenstates of [A, H]. It will be 
seen, in fact, that f is an analytic function of its argument. 

The proof of necessity proceeds from the fact that if H 
generates unitary transformations of the II a) into them­
selves, it follows that 

Ae- itH I a) = Ae- itH I a), (3.7) 

where A is a number which is dependent on t and a. In 
infinitesimal form, 

(1 + iOlH)A(l- iotH) I a) = (a - iotf) I a), (3.8) 

where we have written A = a - iotf, and f is independent 
of t. Then, 

[A,H] I a) = f I a). (3.9) 

The dependence of f on a is obtained from the relation 

f == f(a) = (0 I [A,H] II a) 
0() 

= (0 I [A, H] I 0) + L; (01 [A,H] In) n 
n a , 

n=l IT F(m) 
m=l (3.10) 

which ShOWS15 that f(a) is analytic in a and therefore 
that f(A) is well defined. 

Sufficiency follows from the fact that Eq. (3.8) is a 
direct consequence of assuming Eq. (3. 6) 

(iii) We observe now the important fact that the set of 
all operators H which satisfy Eq. (3. 6) for a given A 
constitutes a Lie algebra. For, if H1 and H2 are mem­
bers of this set whose commutators with A are f 1(A) 
and f 2 (A), respectively, it follows that 

(3.11) 

and 

[A [H H]] = f (A) df1 (A) - f (A) df2 (A) (3.12) 
, l' 2 2 dA 1 dA' 

which shows that the set is linear and closed with res­
pect to commutation. Eq. (3. 12) is deduced from the 
Jacobi identity and the analyticity of f1 and f 2• 

It is a remarkable fact that, within the framework out­
lined above, it is possible to deduce the form of all 
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Hermitian operators H associated in this way with a 
generalized destruction operator A. Further, all the A 
operators separate into two classes, one of which leads 
to Hamiltonians belonging to physically uninteresting 
Abelian Lie algebras, while the other contains the shift 
operator E as a special case and the standard annihila­
tion operator as a limiting case. This latter class pro­
vides the physically interesting Hamiltonians. 

In demonstrating these results it is convenient to work 
with the states /I a) as defined in Eq. (3. 5) because they 
permit differential representations of operators. Thus 
we have from Eq. (3. 8) 

(1- iOtH) II a) = (1- ic5t g(a, a*» II a - iOtf(a» 

= (1- iat(g(a, a*) + f(a) aaa » II a) • 

(3.13) 

The function g( a, a *), to be determined, serves not only 
to represent a possible phase factor, but also to pre­
serve the normalization (3.5), and is therefore not 
necessarily real. Then, 

H II a) = [tea) ~ + g(a, a*)] /I a). 
aa 

(3.14) 

We must now apply the requirements of Hermiticity to 
H, which is done by requiring that 

(1311 H II a) = (a II H II 13)* (3.15) 

for all a and 13. If we write II a) as 
00 

/I a) = ~ hna n In), (3.16) 
n~O 

and define the function lJI(~) by 
00 

lJI(~) = ~ h; ~n, (3.17) 
n~O 

lJI(~) is analytic within the circle I ~ 1< R2, where R is 
the spectral radius of A. The matrix element in Eq. 
(3.15) becomes 

(1311 H II a) = [tea) ~ + g(a, a*)]lJI(a/'3*). (3.18) oa 
Setting 13 := 0 in Eq. (3. 15) gives 

g(a, a*) = f(O)* hia + g(O)*, (3.19) 

which shows that g is analytic and, in fact, linear in a 
and thatg(O) is real. Putting Eq. (3.19) into Eq. (3.18), 
differentiating the latter with respect to 13 * and then 
setting 13* = 0 yields the following equation for f, 

f(a) = fo + N a + f; h~ a 2 , 

k + 1 

where fo = f(O), f1 =f'(O) and 

1/(k + 1) = (2h~/hi) - 1. 

(3.20) 

(3.21) 

Differentiating f(a) once with respect to a and setting 
a = 0 shows that fl is real. Finally, using Eq. (3.20) 
with the Hermiticity requirement leads to 

(fo/'3*-roa)[lJI'(~)- hi ~lJI'(~)-h~lJI(~~= 0, 
k+1 J 

(3.22) 

with ~ := ai3*. A moment's reflection now shows that we 
must have either 
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(A) fo := 0 
or 

(B) lJI'(O - [hUCk + l)glJl'(~) - h~lJI:= O. 

Case (A) may be disposed of quickly by noting that Eq. 
(3.14) becomes 

H II a) == [t1 a a~ + g(O)] II a) 

== [tIN + g(O)] II a) • (3.23) 

Once stated in general operator form, the restriction to 
the specific normalization defined by II a) becomes un­
necessary and we see that H is a real, linear combination 
of N and the unit operator I. It is therefore an element 
of the two-dimensional Abelian Lie algebra U(l) x U(l). 
The transformations generated by N and I are physically 
uninteresting in that they merely represent the unper­
turbed oscillator. 

The differential equation in case (B), along with the COn­
dition ~ (0) := 1, has the solution 

(3.24) 

In order to match this with Eq. (3.17) we note that there 
is always a finite circle in the ~ - plane within which we 
can expand Eq. (3. 24) in a convergent power series 

lJI(~) = I; r(k + n + 1) ( hi~ \n. 
n~O n! r(k + 1) k + 1) 

(3.25) 

Note the implicit requirement that k > - 1 to ensure 
that the coefficients in the power series all be positive 
in conformity with the definition of Eq. (3.17). The 
radius of convergence of the above power series is the 
square of the spectral radius of A. 

Taking the square root of the ratio of successive coeffi­
cients in Eq. (3. 25) shows the F(n) of Eq. (3.3) to be 

F(n) = (1/h1)../n(k + l)/(k + n). (3.26) 

The factor 1/h1 is a scale factor which plays no essen­
tial role in the eigenstates of the resulting A operators. 
The choice hI = 1 results in k = 0 corresponding to the 
unit shift operator E, while k ~ 0() corresponds, as we 
shall see, to the annihilation operator. We refer to the 
resulting A as the generalized destruction operator 
A(k), i.e., 

A(k) = E../N(k + l)/(N + k). (3.27) 

It follows from this expression that the spectral radius 
of A(k) is .fii+1... Thus, in terms of a single real para­
meter k, we have the general form of the annihilation 
type operator asSOCiated with Case (B). It is now a 
simple matter to exhibit the associated eigenstates I a, k) 
in normalized form. The normalization factor follows 
from the definition of lJI(~) in Eq. (3. 17) with ~ == I a 12 
and from the expression for lJI(O in Eq. (3.24). The re­
sult is 

la,k) = [
1 _ ~J(k+1)/2 

k + 1 

x I; r(n + k + 1) ( a )n I ) 
n~O n ! r(k + 1) .Jk + 1 n. 

(3.28) 

It now remains to deduce the form of the associated 
Hamiltonian and to show that it is an arbitrary linear 
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combination of interaction terms and the free oscillator 
term. Our starting point is once again Eq. (3. 14), into 
which we substitute the expression in Eq. (3. 20). This 
gives 

H II a) =[(fo + f1a + f6 a~~ + (jo*a + g(O»lll a). 
k + 1 / oa ~ 

(3.29) 
Using 

~ 11(1\ - IN(N + k) E+ II ) oa ! - k + 1 a, (3.30) 

and 

(3.31) 

we are again freed of the II a) normalization and obtain, 
after some rearrangement, 

H = (jo/.fk+1.)H+ + (!6/.fk+1)H_ + flN + g(O) 

= Co + C1H l + C 2H 2 + C3H 3 , (3.32) 

where 

Hl + iH2 == H+ = H~ = ../N(N + k)E+, 

H3 = N + (k + 1)/2 

(3. 33a) 

(3. 33b) 

and Co, Cl , C2 , C3 are independent real numbers. The 
Hamiltonian of Eq. (3. 32) is an element of the Lie alge­
bra of 0(2,1) x U(l), since Hl>H2, and H3 satisfy the 
commutation relations of 0(2,1). The basic equation 
(3. 6) takes the form 

[A,H3J = A, 
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The trivial case fo = 0 represents the free oscillator 
with the obvious result that a(t) = ae-iht • For fo ;00 0, 
we make the substitution 

a(t) = _ i k + 1 _1_ dw(t). 
f~ w(t) dt 

(4.5) 

The function w (t) need be· determined only to within a 
multiplicative constant. This can be done by noting that 
it satisfies the second order differential equation 

d2w dw I fo 12 
dt2 + ifl dt"- k+T w = o. (4.6) 

Imposing the condition a(O) = a on the general solution 
of this equation gives 

w(t) = e-iht/2 rcos st + i(fl + fda ) sin st] (4.7) 
L 2 k+1 s ' 

where 

\(

ff _ ~)1/2 
4 k + 1 ' 

s= 

i (Ifo 12 _ ff)1/2 
k + 1 4 ' 

f2 If 12 2>_°_ 
4 k + 1 ' 

ff Ifol2 -< --. 
4 k + 1 

(4.8) 

This in turn leads to the results that a/..Jk+l undergoes 
the linear fractional transformation 

with 

a(t)/..fk+1. = a(a/..fk+1.) + b 
b*(aj../k + l)+a* 

(4.9) 

[A, H+ J = ..Jk+T., 

[A,H_] = A2/(k + 1) 112. 

(3.34) a = co sst - i(jl/2) (sinst/s), (4. lOa) 

4. DYNAMICS OF THE la, k> STATES 

In this section we turn our attention to the group of 
transformations induced on the I a, k) states by unitary 
operators e- itH, where H is a Hamiltonian of the form 
(3.32). Since the eigenvalue transformations are un­
affected by constant terms in the Hamiltonian, we res­
trict ourselves to the operators Hl>H2,H3 by choosing 
g(O) = fl[(k + 1)/2]. The resulting Hamiltonian will be 
referred to as H(k), i.e., 

USing the pertinent results of the previous section, we 
can rewrite Eq. (3. 13) as 

(1 - iotH(k» II a, k) = (1 - iMg(a» II a - iOtf(a), k). (4.2) 

It then follows that 

e-itH(k)lIa,k) = !~~ (l- i 1z H(k~nll a,k) 

= exp{- i lot dtg[a(t)]} II a(t),k), (4.3) 

where a(t) satiSfies the Riccati type lB differential equa­
tion 

da(t) ~ f; ~ -- = - if[a(t)] = - i fo + fla(t) + -- a 2(t) , 
dt k + 1 (4.4) 

with initial condition a(O) = a. 
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and 

b = - (ifo/..Jk+T.) (sinst/s). (4. lOb) 

Thus I a 12 - I b 12 = 1, so that the transformation has 
unit determinant. 1 7 It can be verified also that it maps 
the interior of the spectral circle I a I < ..fk+l into it­
self. 

Having established the transformation properties of the 
eigenvalues within the spectral Circle, it now remains 
to evaluate the multiplier exp{- i fot dtg[a(t)]} in Eq. 
(4.3), which, it will be recalled, does not generally have 
unit magnitude because it is defined with respect to the 
II a, k). From Eq. (4. 5) and the expression for g(a), it 
follows immediately that 

J. t dt [ (t)] = k + 1 f t _ i(k + 1) r dt _1_ dw(t) 
o g a + 2 1 0 w(t) dt ' 

which leads to the multiplier 

exp{- i J~ dtg[a(t)]} 

(4.11) 

= exp{ - (k + 1) In [cosst + i (~l + ~ :ai) Si:st] } 

(4.12) 
The branch of the logarithm in the exponent is deter­
mined by taking the principal value zero at t = 0, then 
demanding continuity in t. 

The results obtained thus far in this section are sum­
marized in the formula 
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exp{- it~oH:!AH- + flH~} II a,k) 

{ [ (
1 f*a) sinst]} = exp - (k + 1) In cosst + i 21 + k: 1 -s-

x 11...fk+i aa + b..fk+i , k), 
b*a + a*...fk+i 

(4.13) 

where a, b, and s are given by Eqs. (4. 8) and (4.10). 

We are now in a position to exhibit unitary transforma­
tions which transform the ground state to an arbitrary 
(normalized) state I a, k). Setting a(O) == a = 0 in Eq. 
(4.9), it is apparent from Eq. (4.10) that an arbitrary 
a(t) is easily attained by making the choice fl = O. for 
we then have 

(4.14) 

and 

{ t [ (If I t\l<k+l) 
exp - i J: dt g[a(t)]j = cosh .Jk: 1JJ 

= 1 - tanh2 ---[ ( 
Ifo I t1~<k+l)/2 
..fk+i 

(4.15) 

Looking at Eq. (3. 28) we see that (4.14) provides just 
the proper normalization factor, as it must, since II 0) = 
10). The resulting unitary operator can be put into a 
particularly simple form which does not depend explicit­
lyon the parameter t by choosing 

fo = ie i ¢, t = p../k+1.. (4.16) 

This leads to the relations 

(4.17) 

where the unitary operator Dk(p, cp) is defined by18 

(4.18) 

The states Iz) of Eq. (3.1) are obtained by setting k = 0, 
so that 

Do(p, cp) = exp{p(ei¢NE+ - e-i</J EN)} 

= exp{p(ei ¢..fN a+ - e-i</J alii)}, (4.19) 

and 
Do(p,cp) 10) = I z), z = ei ¢ tanhp. (4.20) 

These results, and those of the previous section, provide 
the operators called for by the arguments of Sec. 2. In 
particular, we note that the interaction Hamiltonians 
which generate phase states are linear in a..fN and ,IN a+ , 
but not in q and p. 

An interesting property of the Hamiltonians (4.1) appears 
when we consider the eigenvalue transformations of 
Eq. (4.9) in more detail. The nature of the transforma­
tions depends on the value of the parameter s. For 
each value of k, the Hamiltonians (4.1) fall into two 
classes according to whether the parameters f 0 and f 1 
are such that s is real or pure imaginary as indicated 
in Eq. (4. 8). 

The difference between the two classes is best under­
stood if we consider the points which are invariant 
under the transformation of eigenvalues induced by 
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each Hamiltonian.19 These can be determined either 
directly from Eq. (4.9), or by setting the right-hand 
side of the differential equation (4.4) equal to zero. 
There are generally two such points, given by 

a = (k + 1) (- fl ± 2s)/2fri. (4.21) 

It is not difficult to see that for the first class of Hamil­
tonians (s real), both invariant points lie on the same 
ray from the center of the spectral Circle, one inside 
the circle and one outside. For the other class (s pure 
imaginary), both pOints lie on the circumference of the 
circle. For the case s = 0, which properly belongs to 
the second class, the two invariant points coincide, and 
lie on the circumference. 

The eigenvalue transformations induced by the first 
class of Hamiltonians are periodic in t with period 7T / s. 
The eigenvalue a, starting from any initial value inside 
the spectral Circle, follows a closed trajectory which 
circumscribes the invariant pOint within the circle.2o 

Thus, the free oscillator mean energy, related to I a I, 
varies periodically with t for these Hamiltonians. 

As s ~ 0, the trajectories are pinched between the two 
coalescing invariant points, so that in the limit, all tra­
jectories pass through this single point, which now lies 
on the circumference of the spectral circle. At the 
same time, the period becomes infinite. 

This behavior implies that the asymptotic state of the 
system for t ~ ± 00 is independent of the initial state, 
and is determined only by the parameters fo and fl that 
specify the Hamiltonian.21 This final state has infinite 
mean energy and sharp phase resolution. A Hamiltonian 
of this class therefore leaves its imprint on the system 
in the value of the phase of its final state. 

If the parameter s is pure imaginary, the trajectories 
pass through both invariant points on the circumference 
of the circle I a I =..fk+1. There are then two asymp­
totic states of infinite energy, one for t ~ + 00 and one 
for t ~ - 00. The behavior is otherwise similar to the 
case s = O. 

It is intuitively obvious from Eq. (3. 27) that the limit 
k ~ 00 should lead to the well-known coherent states 

co n 
la) = e-laI2/2 L; ~ In). 

n=O {;If 
(4.22) 

This follows rigorously from the fact that, for a given a, 
we can choose k suffiCiently large so that a is within the 
spectral radius of A(k) and then compute lila) -la, k) 112. 
Noting that (a la,k) is real, 

II I a) - I a, k) 112 = 2(1 - (a I a, k», 

where 

(ala,k)=e-laI2/21 __ a_ ( 
I 12)<k+l)/2 

Since 

k + 1 

00 ( r(n + k + 1) )1/2 

X n~ r(k + l)(k + l)n 

r(n + k + 1) > 1 
r(k + l)(k + l)n - , 

we have 

I a 12n 
n! 

~ I a 12 )< k+l)/2 
e 1 a 12/2 1 - -- ::s (a I a k) ::s 1 

k + 1 " 

(4.23) 

(4.24) 

(4.25) 

(4.26) 
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so that 

(a / a,k)~ 1, .-co (4.27) 

which proves the point. 

Similarly, the behavior of the unitary operator D.(p, ¢) 
defined by Eq. (4.17) is of interest. Using essentially 
heuristic arguments, we see22 that for a fixed 

a :::: ei</J..fk+l tanhp, (4.28) 

p must become small as k ~ 00. Thus a Q< ei</J.fii p, and 
from (3. 33a), 

D.(p, ¢) ~ exp{ ~ ..[fiN E+ - a* Em}= ecta+-ct*a 
.Jk.Jli ' 

(4.29) 
which is just Glauber's10 D(a) operator. 

These results encourage us to seek a resolution of the 
identity of the form 

1= f d2a p( / a /2,k) / a,k) (a,k /, (4.30) 

with the weighting function p( / a /2, k) to be determined, 
and d2a :::: d(Rea)d(Ima) with integration over the circle 
/ a / <..fk+l. By introducing polar coordinates in the 
a-plane and making the change of variable t:::: /a /2/k+ 1, 
the integral in (4.30) can be written as 

J d2a p( / a /2,k) / a,k)(a,k / 

:::: 1T n r(n + k + 1) 11 dt p(t, k)(l - t).+l tn / n) (n / 
n=O r(n + l)r(k) 0 ' 

(4.31) 

where p( / a /2, k) = pet, k). A resolution of the identity 
is obtained if 

11 dt pet, k)(l _ t) .+1 tn =.!. r(n + l)r(k) . 
o 11 r(n + k + 1) 

(4.32) 

Using 

t dt (1 - t)q-l tP-1 = r(p)r(q) , 
o rep + q) 

(4.33) 

when the real parts of p and q are positive, we see that 

pet, k) = (1/11) [1/(1 - t)2], (4. 34a) 

or, 

p(/a/ 2,k) = (1/11)[1/(1-/a/ 2j(k + 1»2], (4. 34b) 

with the condition k> O. This gives the result 

1 (Ia 12)-2 -; J d2a 1- k+1 la,k)(a,k/=I,(k>O). 
(4.35) 

Note that the weighting function has suffiCiently singular 
behavior for its integral to diverge, a property which is 
to be expected since Tr(I) = 00. The condition k> 0 in­
dicates that this resolution fails for the phase states 
(3.1). This is a particularly vexing fact in view of the 
physical interest attached to these states. The reason 
for it is most simply seen from Eq. (4. 32), which shows 
that the condition k :::: 0 demands that all of the moments 
of the function pet, 0)(1 - t) on the unit interval be equal. 
This in turn forces p(t,O) to have 6-function type beha­
vior at t = 1. In a crude sense, this indicates that the 
unit shift operator E tries very hard to behave like a 
unitary operator. 
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5. GENERALIZATIONS AND EXTENSIONS 
It should be apparent by now that the formalism deve­
loped thus far already exceeds in generality the require­
ments posed in Sec. 2. Quite aside from relevance to 
phase states there is thus the mathematically intriguing 
question of whether the methods developed here are use­
ful for the study of groups. 
The essential feature of our procedure is the association 
of a destruction operator with a unitary group in such a 
fashion that the eigenstates of the operator transform 
into themselves under the action of the group. Because 
eigenstates of destruction operators are of necessity in­
finite dimensional, this leads to infinite dimensional rep­
resentations of the group. However, there is a limiting 
sense in which the association between destruction opera­
tor, eigenstate, and group carries over into finite dimen­
sional spaces. In this section we illustrate this by ex­
tending our formalism to include representations of 
0(3) as well as 0(2, 1). 

Our starting point is a consideration of the effect of re­
moving the restriction - 1 < k < <X) from the parameter 
k by extending it to the complex plane. The operators 
A(k) of Eq. (3. 27) and the H of Eq. (3. 33) remain well 
defined. Their matrix elements on the number basis are 
in fact analytic in the complex k-plane cut from -1 to 
- 00. Further, the' / a, k) of Eq. (3.28) continue to be 
normalized eigenstates of A(k) for / a / < .J / k + 11. 

The Hermiticity of the H, which is of course generally 
lost in this process, can be restored for negative integ­
ral k (approached, for example, from the upper half­
plane) by a simple modification based on the fact that 
the H now reduce the oscillator space to two invariant 
subspaces. Thus, let k = - p, where p is a positive in­
teger greater than unity. The Eq. (3. 33a) shows that 

H+ / P - 1) = 0 (5.1a) 
and 

H_/p)=O. (5.1b) 

Therefore, a natural division of the number basis into 
two invariant bases is defined. The vectors / n) with 
0::;: n ::;: p - 1 span the p-dimensional subspace Xp, while 
those with n :;:: p span the infinite dimensional subspace 
Xpoo, In the latter subspace the H remain Hermitian as 
defined, and are in fact identical, except for a relabeling 
of the basiC states, with those for the case k = + p. 
We therefore fix our attention on the subspace Xp, 
where multiplication of H± by - i achieves the desired 
result. The re-defined Hamiltonians, 

(5.2a) 

and 

H3 :::: N - (p - 1)/2 (5.2b) 

satisfy the 0(3) commutation rules. We have thus been 
led naturally to the p-dimensional representation of the 
0(3) algebra. In conventional notation,p = 2j + 1 and 
J 3 ::::N -j. 

The question of obvious interest at this point is the sta­
tus of the I a, k) states. Inspection of Eq. (3. 28) shows 
that, as k approaches - p from the upper half of the 
complex plane, the coefficients of / a, k) in X; becomes 
vanishingly small. In the limit, a well-defined p-dimen­
sional state / a,p) is obtained: 

I a,p) = (1 + ~\-(P-1)/2 p~ }(p-1)(_a )n In), 
p - iJ n-O n .Jp - 1 

(5.3) 
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where 

(
p - 1\ _ (p - 1)! 

n ) n!(p-1-n)! 
(5.4) 

is the standard binomial coefficient. The state I a,p) is 
now defined for all a, and not merely those within some 
spectral radius, as it is when k is not a negative integer. 

Note that A(k), which now becomes 

Ap == A(- p) = E j N(p - 1) , 
p-N 

(5.5) 

is well defined on Xp. Also, its commutators with the H 
of (5.2) satisfy the basic relation (3.6). However, the 
I a,p) of (5.3) are no longer eigenstates of A in the 
strict sense in view of the fact that a destruction opera­
tor cannot have eigenstates in a finite dimensional 
space. There is, nevertheless, a limiting sense in which 
the la,p) are eigenstates of Ap' This can be seen from 
the equation A(k) I a, k) = a I a, k), which holds rigor­
ously for k indefinitely close to - p. We therefore have 

lim A(k) I a,k) = a I a,p), (5.6) 
k"'-p 

which, however, does not imply Ap I a, p) = a I a, p). In 
effect, the Singular limiting behavior of A(k) on the state 
I p) combines with the vanishingly small projection of 
I a, k) on I p) to give a finite am plitude on I p - 1). 
This feature is not present when A is restricted to Xp. 

The above remarks suggest the retention of the concept 
of eigenstate of A(k) even in the limit, and we thus refer 
to the I a,p) as extended eigenstates of A(k). We now 
show that these states also retain the property of trans­
forming among themselves under transformations gene­
rated by the Hamiltonians of Eq. (5.2). 

Our demonstration is based on the fact that the H can be 
represented as differential operators when acting on the 
nonnormalized states II a, p). The following equations 
are easily verified from (5.2) and (5.3): 

H3 II a,p) = (a oOa - p -; 1) II a,p), 

H+ II a,p) = .../p - 1 oOa II a,p), 

(5.7a) 

(5.7b) 

H_lIa,p)= ("'/P-1 a-~ a2~) Ila,p). 
vp - 1 oa 

(5.7c) 

The differential relations imply that one can immediately 
employ the methods of Sec. 4, beginning with Eq. (4. 2). 
In fact, one obtains, "mutatis mutandis", as the analog of 
Eq. (4.13), the result 

exp{- it[(p -lt1/2 (foH+ + fri H_) + f1H3]}IIa,p) 

{ [ 
.(f1 f;a) sinst]} = exp (p - 1) In cosst + z 2 - p _ 1 -s-

x II.../p - 1 aa + ib-/P=1. p) 
ib*a + a*...}p-1' , 

(5.8) 

where 

S = -.!. + __ 0_ > 0, (
p I.t: 12)1/2 

4 P - 1 
(5.9) 

and 
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. f1 sinst 
a = cosst - z - --, 

2 s 

fo sinst 
b=----- . 

.../p -1 s 

The analog of Eqs. (4. 17) and (4.18) is 

Dp(P, </J) 10) = l.Jp - 1 ei ¢ tanp,p) , 

Dp(p, ¢) = exp{pe i ¢ H+ - pe- i ¢ H_} • 

753 

(5. lOa) 

(5. lOb) 

(5. 11 a) 

(5.11b) 

With these formulas, our extension of the formalism to 
0(3) is complete. 

We can characterize the results of this section in group 
theoretical terms by saying that we pass continuously 
from unitary representations of 0(2,1) to the unitary 
representations of 0(3) via a continuum of nonunitary 
representations of 0(2, 1). Thus, representations of the 
compact group appear at isolated values of the para­
meter which labels the representations of the noncom­
pact group. 

6. REPRESENTATIONS OF 0(3) AND 0(2,1) 

We have shown in the preceding sections that the groups 
underlying the dynamiCS of phase states are 0(2,1) and 
0(3). These groups are realized in our formalism in 
two distinct way: (i) as mappings of the eigenvalues of 
the generalized destruction operator, and (ii) as trans­
formations of the Hilbert space of harmonic oscillator 
states. The transformations involved are familar. 23- 25 
In the case of 0(2,1), the eigenvalue mappings are the 
linear fractional transformations obtained by stereo­
graphic projection of the unit hyperboloid onto the com­
plex plane. The group of such transformations is known 
to be isomorphic with 0(2,1), and can therefore be iden­
tified with this group. A similar situation obtains with 
respect to 0(3) and projections of the unit sphere. The 
spectrum of the generalized destruction operator can 
therefore be regarded as the supporting space of the 
underlying groups 0(2,1) and 0(3). The transformations 
of Hilbert space on the other hand are simply the linear 
irreducible representations of the two groups. 

The generalized destruction operator brings the support­
ing spaces of the group and of its representations into 
particularly close association. It is an operator which 
is defined on the representation space and whose spec­
trum serves as the space on which the group itself acts. 
Further, the mapping of the spectrum is associated with 
a mapping of eigenstates by the group, and thereby deter­
mines the transformation in Hilbert space associated 
with a particular group element. It will be shown in a 
forthcoming paper that these features are general and 
apply to groups other than 0(3) and 0(2,1). Here, we con­
tent ourselves with showing that some of the familiar re­
sults pertaining to representations of the 0(2,1) and 
0(3) groups appear in the present context. 

We begin by identifying the representations that have 
been obtained. In the case of 0(2,1), irreducible repre­
sentations are characterized25 by the value of the Casi­
mir operator Q = - Hi - H~ + H~ and the spectrum of 
the generator H 3' These are found from Eq. (3.33) in 
our case: 

Q = t (k2 - 1), 

H3 = n + ~ (k + 1), n = 0,1,2, .••• 

(6.1) 

(6.2) 

This infinite family of representations, labeled by the 
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real parameter k, coincides with the representations 
D-(<I» of Ref. (25), with <I> = - i (k + 1). The represen­
tations D+(<I» are also obtained in our formalism by a 
different choice of labeling for the generators, which 
corresponds to the substitutions H 3 --) - H 3 and 
H? --) - H 2 • These are multivalued representations of 
0(2,1) unless k is an odd integer. Our basic require­
ment associating a generalized destruction operator 
with a representation therefore leads to all the unitary 
representations of 0(2, 1) in which the spectrum of H 3 

is bounded either from above or from below. The re­
maining representations, in which H 3 has an unbounded 
spectrum, cannot be supported on the harmonic oscilla­
tor basis. They can be obtained, however, by our method 
if an extension of the basis to negative n is made. The 
details of this extension will be given in a future paper. 

The case of 0(3) is simpler. It is evident from the re­
marks following Eq. (5. 2) and from the allowed values 
of p that we obtain all of the unitary representations ex­
cept for the trivial one belonging to the eigenvalue zero 
of the Casimir operator Q = J2 = H~ + H~ + H~. Thus 
the generalized destruction operator and its eigenstates 
bring into association the unitary representations of 
0(3) and the bounded unitary representations of 0(2, 1). 

If we now turn our attention to the eigenstates (3.28) and 
(5.3), we find that they have a simple group theoretic 
significance: they are the transforms under the opera­
tors of the group of the single state I 0). The existence 
of the operators Dk(p, £/» and Dp(P, £/» of Eqs. (4.16) and 
(5.11) guarantees that all the eigenstates can be obtained 
from the ground states in this way, and the basic prop­
erty (3.6) insures that we obtain only eigenstates. 

In the case of the rotation group, the ground state cor­
responds, for a given representation j = i (p - 1), to the 
state with H3 = - j, Le., the state with "spin down" with 
respect to the 3-axis. The rotation which transforms 
this state into another extended eigenstate of the general­
ized destruction operator simply rotates this spin to 
some other direction in space. We may therefore charac­
terize the eigenstates as those states having the mini­
mum value of the component of angular momentum in 
some definite direction. 

A similar characterization is possible for 0(2,1) if we 
interpret HI and H2 as the generators of pure Lorentz 
transformations in two orthogonal spatial directions, 
and H 3 as the generator of rotations in the plane of these 
directions. Here again, although the eigenvalues of H3 
are no longer restricted to integers or half-integers, 
the state 10) corresponds to the minimum eigenvalue. 
Therefore the eigenstates of the generalized destruction 
operator are just those states which have minimum 
eigenvalue of H3 in some definite Lorentz frame. 

Another interesting description of the eigenstates is 
obtained by considering their components (n I a) with 
respect to the number basis. The above remarks indi­
cate that these components can be written in the form 
(n I D 10) for some operator D belonging to the repre­
sentation. Furthermore, the quantities (n I D 10) for an 
arbitrary operator of the representation form the com­
ponents of some eigenstate of the generalized destruc­
tion operator. This shows that the first columns of the 
matrix representatives of all the operators of the rep­
resentation comprise the class of eigenvectors of the 
generalized destruction operator. 

The full matrix for an operator D of exponential form 
is also calculable from the eigenstates of the general­
ized destruction operator. The results are not new and 
the derivation is similar to treatments found in the 
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literature,24 but the method given here offers a consi­
derable conceptual simplification. Beginning from 
Eqs. (4. 13) and (5.8), we obtain an equation 

(n ID II a) = exp{- i ic/ dtg[a(t)]} (nil a (t) (6.3) 

in which the left-hand side is expressible as a conver­
gent power series in a with coefficients proportional to 
(n I Din') , and the right-hand side is a known analytiC 
function of a for a given D. We can therefore obtain 
(n I Din') by comparison of coefficients on either side 
of Eq. (6.3). In this way we can obtain, for example, the 
familiar result26 for the matrix elements of exp(- i{3H2 ) 

for 0(3), and its analog for the bounded representations 
D-(<I» of 0(2,1): 

(n I e-iflH2(k) In') = ( n'! r(n + k + 1)\ 1/2 

n! r(n' + k + 1)) 

X6 n! 

r (n'-r)!(n-n'+r)! 

x (_ l)n-n'+r r(n + k + r + 1) 
r !r(n + k + 1) 

x (coshi 1P)n-n'-k-1-2r(sinhi 1P)n-n'+2r. (6.4) 

The summation over the integer r runs over a finite 
range which is determined by the factorials in the de­
nominator. 

Note added in proof: Since submitting this paper it has 
come to our attention that some properties of the states 
of Eq. (5. 3) have been discussed in other contexts by 
various authors. 27 

APPENDIX 

We show here that when an oscillator is in a state Iz) of 
the form (3.1) with z positive real, i.e.,£/> = 0 in Eq. 
(2.11), then aq/( q) approaches a finite number less than 
unity and ap becomes vanishingly small as (N) --) GO • 

It is convenient to normalize units so that 

In terms of the unit shift operator E of Eq. (2. 10) we 
have 

a = E..fN = ..IN + 1 E 

and 

(A2) 

a2 =..IN + 1 E..JN + 1 E = ..J (N + l)(N + 2) E2. (A3) 

USing the fact that E I z) = z I z) and z is real gives 

(q2) = 1 
(q)2 2UN + 1)2 

x((N) + i)«N) + 1) + U(N + l)(N + 2)0. (A4) 
(N) ') 

where (N) is related to z by Eq. (2.11). We shall see 
that the behavior of this expression depends strongly on 
the behavior of the expectation value 

UN + 1) = (1 - z2) I; ..;:;z+J. z2n, (A5) 
n=O 

which we now examine. 
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Let 

Z2 = (N) = ~ 
(N) + 1 ' 

so that 
00 

UN + 1) = L) (vn+l- rn)~n. 
n=O 

Noting that 

vn+l-rn=! 
2 

enables us to write 

UN + 1) = _1_ foo 
2..fif -00 

where we have used 

dx 1- e-x2 

x2 1- ~e-x2' 

~ Joo dx e-{n+r)x 2 = __ 1_ 
.fiT -00 rn+r 

(A6) 

(A7) 

(AB) 

(A9) 

(A10) 

Expressing ~ in terms of (N) and making the change of 
integration variable to y = x.J(N) puts (A9) into the form 

__ .J(N) (1 + <N» 00 dy 1- e- y2
/(N) 

(.IN + 1) = ..fif fo y2 1 + (N) (1- e-y2/(N))" 

(All) 
For very large (N) the integrand in (All) goes as 
[<N) (1 + y 2)]-1. This suggests writing <.IN+1 as 

UN + 1) = 1 + (N) foo ~ G (y 2, _1 ) , 
...f1f(N) 0 1 + y2 (N) 

where the function G(x, €) is defined by 

G(x,€) = [1 + (l/x)V[l + (l/f(x, f)] 
and 

f(x, €) = (1 - e-€x)/€. 

(A12) 

(A13) 

(A14) 

It may be verified by straightforward calculation that 
G(x, €) decreases monotonically from the value G(O, €) = 
1 to G(oo, €) = 1/(1 + E). This then gives 

~...f1f(N) ::s UN + 1) ::s ~...f1f(N) (1 + l/(N». (A15) 

GOing back to Eq. (A4) and using 

(N) + ~ < (...f(N + l)(N + 2» < (N) + L (A16) 

which follows directly from the fact that 

00 

U (N + l)(N + 2» = (1 - ~) L) ...f (n + l)(n + 2) ~n, 
n=O (A17) 

with the appropriate inequalities holding term by term, 
we get 

.! (1 + (1/2(N»"f< (q2) <! (1 +_3_+_1_). 
1f 1 + (l/(N») (q)2 1f 2(N) 4(N)2 

Thus as (N) becomes indefinitely large, 

or 

oq ...., 0.52. 
(q) 
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Now since (p) = 0 for a state Iz) with cP = 0, the calcu­
lati~n of op involves only the calculation of (p2), which 
from Eqs. (A1) and (A3) is given by 

(p2) = (N) + ~ _( (N) \ .J(N + l)(N + 2» 
(N) + 1) (A21) 

The demonstration that this expression becomes vanish­
ingly small for large (N) requires a somewhat tighter 
inequality than that of Eq. (A16). Such an inequality is 

U(N + l)(N + 2) > (N) + ~ - t <N ~ ~ ), (A22) 
2 

which again follows from the fact that it holds term by 
term if one writes out the expectation value as in Eq. 
(A17). Thus, 

(p2) < (N) + i - (1 + ~\-l~N) + ~ - t <~ J. 
(N») \ N + 2 'l 

(A23) 
Using the obvious fact that the expectation value 
( l/(N + ~» is bounded from above by unity, we see that 
for (N) » 1 

(P2)<~<_1_)+0(~\. (A24) 
4 N + : (N») 

The relevant expectation value is 

1 . 00 ~n 1 _ ~ 00 ~n+ 1 

<-3) = (1-~) L) - < L) -, 
N + 2" n=O n + ~ ~ n=O n + 1 

(A25) 
so that 

<
_1_)< _1- ~ In(l-~) = In«N) + 1) ) o. 
N + i ~ (N) (N) ~ 00 

(A26) 

We see, then, that (p2),and thus eSp,becomes vanishingly 
small as (N) becomes indefinitely large. 

*A preliminary report of this work and its possible group theoretic 
implications is contained in Y. Aharonov, H. W. Huang, J. M. 
Knight, and E. C. Lerner, Nuovo Cimento Lett. 2, 1317 (1971). Parts 
of this work are contained in a doctoral dissertation presented by one 
of us (HWH) to the faculty of the University of South Carolina. 
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Under this transformation, the old trajectories are mapped into the 
new ones by a linear fractional transformation. The result now follows 
from the elementary property that these transformations map circles 
into circles. The argument can be extended to Hamiltonians of the 
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The random position of a particle in turbulent flow r (t;w) is a vector random function of time 
t :;0:0, wEn. where n is the supporting set of the underlying probability space (n,A 'IL)' If the 
statistics of a Lagrangian velocity field is known, the random position vector r(t;w) is the solution 
of a nonlinear stochastic integral equation. Depending on the particular application, this equation 
may be homogeneous or inhomogeneous and with deterministic or random limits. A theorem is 
presented on the existence and uniqueness of the solution of this integral equation. The proof is 
based on Banach's fixed point theorem. 

1. INTRODUCTION 

The study of the path of a single particle in turbulent 
flow has recently attracted more attention, because al­
though such theories give little information about mean 
flow properties, they find applications in other interest­
ing problems of our times. As such we may mention 
here the study of trajectories of nondispersive particle 
pollutants, that may be assumed to follow fluid particle 
paths in the atmosphere or in rivers. 

One of the main difficulties of such problems is that ex­
perimental means of measurements usually provide the 
Eulerian velocity field u(x, t) where x a fixed point in 
space, while our integral equations involve the Lagran­
gian field u(r, t) with r the instantaneous position vector 
of a particle. Lumleyl suggests discretizing the time 
axis for integration while Wandel and Kofoed-Hansen2 

propose expressions for the transformation of auto­
correlations and power spectra obtained by Eulerian and 
Lagrangian probing. 

If the Lagrangian velocity field u[r( t; w), t, w] or any 
general function ¢ of the position vector r(t; w) is con­
sidered known then the problem can be formulated as a 
nonlinear stochastic integral equation. Cha03 was able 
to relate the stochastic particle path of a particle to the 
statistics of the fluid motion by linearizing this equation 
to an integro-differential equation with a stationary 
forcing function. For a fully developed turbulent flow 
the integral equation is homogeneous with deterministic 
limits of integration and was considered by Lumleyl 
and later by Padgett and Tsokos4 who were concerned 
with its existence and uniqueness. If the particle traject­
ory is initiated in the laminar portion of the flow, then 
the instant to(w) at which the particle enters the turbu­
lent regime is a random quantity and the integral equa­
tion becomes nonhomogeneous with random limits. The 
conditions for existence and uniqueness of a random 
solution to this equation is the subj ect of the present 
paper. 

2. PRELIMINARIES 

Let us first consider the motion of a particle which 
follows a path within the laminar portion of the flow, 
passes through the region of transition and enters the 
turbulent regime. Let the time that elapses until the 
particle enters the turbulent regime be to(w). Then the 
pOSition vector of the particle is the solution of the 
integral equation 
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r(t;w) ==h(t;w) + f ¢[r(T;w),t,T;W]dT, 
to(w) 

J. Math. Phys., Vol. 14, No.6, June 1973 

(2.1) 

where (i) WEn, the supporting set of the probability 
measure space (n,A, p,), n being the sample space,A the 
a-algebra of subsets of nand p, a complete probability 
measure on A; (ii) to(w) is a random variable such that 
0:5 to(w) < T 2 ,w E n, to E R+. We shall let Tl == 
inf to(w), WEn and denote by I the closed interval 
[Tl' T 2]; (iii) r(t,w) is the unknown random position 
vector; (iv) ¢[r(T; w), t, T; w] is a vector function of the 
position vector and time and in our specific case the 
random velocity field u(r, t; w); (v) h(t; w) is a random 
vector function defined for tE I and WEn. Note that 
h(t; w) represents the integration through the laminar 
portion of the flow and hence can be expressed in terms 
of a deterministic integral with a random limit. 

J 
to(w) 

h(t;w) == 0 ¢(r(T),f,T)dT. (2.2) 

We will show in this paper that the above stochastic in­
tegral equation possesses a unique random solution, a 
second order stochastic process, which satisfies the 
equation with probability one. However, the results can 
be easily extended so that our solution will be any stoch­
astic process of finite order. 

Let L~(n,A, p,) denote the set of all three-dimensional 
random vectors of the form r(t;w) == [r;(t;w)], i == 1,2,3, 
where for each i,ri(t;w) is an element of L~(n,A,J..I). 

Lemma 2.1: The space L*(n,A, p,) is a normed 
linear space over the reals with the usual definition of 
componentwise addition and scalar multiplication where 
the norm in L~(n,A, p,) is given by 

ir(t;w)i L*(IlA fI) ==maxllr i (f;w)lI. 
2 , , i 

The proof of the above lemma is straightforward and we 
proceed with the following definition. 

Dejinition2.1: Let CT(I,L~(n,A,p,) be the set of all 
continuous functions from I into L~(n,A, p,). This defini­
tion says that t ~ (r(t; w» is continuous and that for 
each t E land each i, i == 1,2,3, ri(t;U,') E L~(n,A,p,). 
Thus for fixed tEl 

We shall define the norm of the space CT(I,L~(n,A,J..I) 
as follows: 

\lr(t;w)ii c (1 L*(1l A fI» == max 1 sup\lr(t;w)\lL*(1l A fI) (. 
T , 2 , , t T

1
::=t:S.T

2 
2 , , ~ 
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We shall use the concept of admissibility and some 
techniques similar to those developed by Tsokos. 5 We 
also refer the reader to a previous pubUcation4 for proof 
and comments of the following Lemma. Also, see 
Bharucha-Reid. 6 

Lemma 2.2: The space CT(I, L~(O,A, 1-1» is a linear 
space over the reals with the usual definitions of addi­
tion and scalar multiplication for continuous functions. 

Finally let us restate the well-known 7 "Banach's fixed­
point theorem" . 

Theorem 2. 1: If F is a contraction mapping from a 
subset W of a Banach space D into itself, then there 
exists a unique point x in W such that F(x) :;:: x, that is a 
unique fixed point of the operator exists in W. 

3. MAIN RESULTS 
For the operator U defined by (Ur )(t; w) :;:: f/ (w) 

4>[r(T;w), t,T;w]dT we state the following lenfma. 

Lemma 3.1: We shall show that UCT(I, L~(O,A, 1-1» c 
CT(I,L~(O,A,I-I». For r(t;w) E CT(I,L~(O,A,J.'»,we 
can write 

Ilr(tl; w) - r(t2; w )11 L* (0 All) 
t 2 " 

:;:: 1111 4>[r(T;w),t l ,T;W]dT 
to(w) 

j t2 
- to(w) 4> [r(T; w), t2, T; w ]dTII L: (n,A,Il)' 

The above expression can be written as follows: 

IIr(tl; w) - r(t2; w)11 L: (O,A,Il) 

:;:: II! 11( ){4>[r(T; w), t1' T; w] 
to w 

- 4> [r(T; wi, t2, T; w J}dTII L: (n,A,Il) 

I t2 
+ 1

1
4>[r(T;w),t2,T;W]dTII L:(0,A,Il)' 

IIr(ll; w) - r(t2; w)11 L:(O,A,Il) 

I t1 
:5 114>[r(T;w),t1 ,T;W] 

to (w) 

- 4> [r(T; wi, t 2 , T; w ]11 L: (n,A,Il)dT 

j t2 
+ 114>[r(T;w),t2,T;w]II L*(0 AIl)dT. 

t1 2 " 

The continuity of 114>[r(T; wi, t l , T; w]11 implies that the 
first term in the above inequality goes to zero with 
It

1
- t21. Also,since t l ,t2 E [and 114>[r(T;w),t2,T;W]1I 

is continuous, the second term goes to zero as It 1 - t21 
~ 0, which proves the desired result. 

Theorem 3. 1: Consider the above random integral 
equation (2.1) under the following conditions: 

(i) 4> [r(t; wi, t, T; w] ;s a continuous function from 
R x [X I x 0 into L~(O,A,J.'); 

(ii) h(t;w) is a continuous function from I into L~(n,A, 1-1); 

(iii) 14>[r(t; w), t, T; w] - 4>[r*(t; w), t, T; w]1 2 

:5 Tlr(t;w)-r*(t;w)12 (3.1) 

for r,r* E L~(O,A,I-I), t, T E R+, where T E R+. Then 
there exists a unique random solution r(t; w) of (2. 1) in 
the space C T(I, L~(n,A, 1-1». 

Proof: Define the operator U as 

(Ur)(t;w):;:: f 4>[r(T;w),t,T;W]dT. 
/o(w) 
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From Lemma 3.1 we know thatpCT(I,L;(O,A,J.'» E 
CT(I,L;(O,A,I-'». We shall prove that the operator U" 
is a contraction operator for sufficiently large n. Let 
r*(t;w) E CT(I,L~(O,A,I-'». Thus,we may write 

t 
(Ur*)(t;w) = f

to
(W)4>[r*(T;w),t,T;W]dT. (3.3) 

Subtracting Eq. (3. 3) from Eq. (3.2), since the difference 
of elements of the space CT(I, L;(O,A, Il» is in the 
space CT(I, L;(O,A, Il», we have 

Ur - Ur* = t {4>[r(T; w), t, T; w] - 4>[r*(T; w), t, T; W]}dT. 
/o(w) 

Taking the expected value of the square of the absolute 
difference of the above expression, we have 

Elur - Ur*12 

:;:: 1 d,.,.{t( ){4>[r(T;w),t,T;W]- 4>[r*(T;w),t,T;W]dT}2 
n to "' 

:5 fndl-'{J;I4>[r(T; w), t, T; w] - 4>[r*(T; w), t, T; w}dT}2. 

We now use Schwartz's inequality to write the above 
expression as 

E I Ur - ur*1
2 

:5 (t - T 1 )1. dllt I 4> [r(T, wi, t,T; w] 
(l Tl 

- 4>[r*(T; w), t, T; w]1 2dT. (3.4) 

Interchanging the order of integration in Eq. (3.4), we 
have 

EIUr-Ur*12:5 (t-T1 )t 1. 14>[r(T;w),t,T;w) 
T1 0 

- 4> [r*(T; wi, t, T; w]1 2dlldT, 

which by virtue of the condition (3.1) can be put in the 
form 

where c = ~(t - T 1)' SUccessive integration of the above 
expression now yields 

E I U"r - U"r* 12:5 c"t" IIr(t; w) - r*(t; w)1I2, 
n! 

which implies that 

Ilunr - U"r*112:5 ~"t" IIr(t; w) - r*(t; w)1I2. 
nl 

Therefore, for sufficiently large n, the operator U" is a 
contraction operator and existence and uniqueness of a 
random solution, r(t; w), follows from Theorem 2.1. 

11. L. Lumley, I. Math. Phys. 3, 309 (1962). 
2c. F. Wandel and O. Kofoed-Hansen, I. Geophys. Res. 67, 3089 

(1962). 
3B. T. Chao, Osterreichisches Ing.-Archiv 18, 7 (1964). 
'W. I. Padgett and C. P. Tsokos, I. Math. Phys. 12, 210 (l971). 
5c. P. Tsokos, Math. Systems Theory 3, 222 (1969). 
6 A. T. Bharucha-Reid, Random Integral Equations (Academic, New 

York, 1972). 
7p. M. Anselone, Nonlinear Integral Equations (U. of Wisconsin Press, 

Madison, 1964). 
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An operator formalism, previously developed to discuss the Gel'fand-Naimark z-basis for the 
homogeneous Lorentz group, is now generalized to treat the projective representations of SL (3, C). 
We find the projective "position" operators Z" Z2' Z3' as well as their canonical conjugate 
"momenta" Ill' 1l2' 113 which form the building blocks of the generators of SL (3,C). The 
z-representation, the states in which the "position" operators Zi are diagonal, has very simple global 
transformation properties. This representation also leads to a Hilbert space endowed with an affine 
metric G, which relates the "covariant" and "contravariant" states. All unitary representations are 
unified by means of a single scalar product in which the matrix elements of G play the role of an 
intertwining operator. 

1. INTRODUCTION 

Recently some noncompact groups have played a major 
role in the understanding and development of important 
physical ideas. Among these, the most striking one is 
the development of the dual Veneziano-type models, which 
relied heavily on the unitary representations of 5U(1, 1)1 
and its extension to the conformal Virasoro algebra. 
Similarly, 5L(2, C) has been used in this connection for 
the group theoretical treatment of the Virasoro-
Shapiro model. 2 The unitary representations of the above 
groups, relevant for dual models, are given by Barg­
mann,3 Gel'fand and Naimark,4 Bars and Gursey,5 and 
are best understood in the so-called z-basis,5 ,6,7 

In view of such considerations, we are motivated to study 
further the structure of the groups that fall into the same 
class with the hope that they may be useful in the further 
development of dual models. 

In this paper, we study the group of 3 x 3 complex 
matrices with determinant one, called 5L(3, C). This 
group can be thought of also as complexified 5U(3) or 
complexified 5U(2, 1), etc. It has 16 generators, eight 
of them form a maximal compact subgroup of 5U(3), and 
the rest are noncompact. Thus, unitary representations 
of this group are infinite dimensional, and can be labell­
ed either by a set of continuous indices or, equivalently, 
by a discrete set of indices with an infinite number of 
values. 

Our method of investigation is the z-operator formalism, 
previously developed to discuss the Gel'fand-Naimark 
z-basis for 5L(2, C),5,6 as well as the z-basis for 
5U(1, 1) and 5L(2, R).6, 7 Here, we generalize this method 
to the more complicated case of 5L(3, C) which is iso­
morphic to 5U(3)L x 5U(3)R' The group and its Lie 
algebra are defined in Sec. 2. In Sec. 3 (and Append~x A), 
we find for 5U(3)L and 5U(3)R' the three commuting pro­
jective "position" operators Z l' Z 2' Z3' and their canoni­
cal conjugate "momenta" ill' il2 , il3. These form the 
building blocks of an operator representation of the 
generators. The construction of the generators is given 
in Sec. 4. We then define the irreducible z-basis, in Sec. 
5, and find the finite global transformations of these 
states, which turn out to be rather simple. In Sec. 6, we 
discuss the covariant and contravariant states which are 
related by a metric operator G constructed from il3. 
We also find the bilinear invariant functionals with the 
help of the matrix elements of G. In Sec. 7 we impose 
unitarity and find the necessary constraints on the Casi­
mir operators. Finally, in Sec. 8, we construct a Hermi­
tian, positive definite scalar product. We do this in a 
unified formulation, which applies to the principal series, 
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supplementary series, and the two kinds of integer-
point representations. The principal and supplementary 
series have also been discussed by Gel'fand and Naimark 
in a completely different approach. 8 We arrive at the 
same conclusions as Ref. 8, for these two cases. 

2. GENERATORS, COMMUTATION RELATIONS, 
AND TRANSFORMATION PROPERTIES 

We consider the group 5L(3, C) of 3 x 3 complex matrices 
of determinant one. The generators of the infinitesimal 
transformations are denoted by J a and K a' O! = 1,2,'" 8. 
They have the following commutation relations: 

[Ja,J6] = ifa6)...J)..., 

[Ja ,K6] = ifa6AK )..., 

[K a ,K6] = - ifa6)...J)..., 

(2.1a) 

(2.1b) 

(2.1c) 

where the structure constants fa6A are the usual 5U(3) 
structure constants given in Ref. 9. 

We define the left- handed and right-handed operators 
X~ and X~ which correspond to an 5U(3) L x 5U(3)R de­
composition of 5L(3, C) 

X~ = t(J", + iK a ), 

X~ = t(J",- iK",) 

with the commutation relations 

[X~,Xt] = ifa6AX~, 

[X~,X*] = if"(6)"'X~, 

(2.2a) 

(2.2b) 

(2.3a) 

(2.3b) 

(2.3c) 

The 3 x 3 representation of the left- and right- handed 
5U(3) groups is denoted by Aa/2 (or - A * ",/2), where 
the 3 x 3 traceless matrices A cl2 satisfy the same com­
mutation relations as (2.3a) or (2.3b) and are given ex­
plicitly by Gell- Mann. 9 

With the help of the matrices Aa and their complex con­
jugate A~a we define two matrices AfJ and Bfj with opera­
tor entrzes 

L 00 a a. L 
Aij = L; XLA ij WIth TrA = 0, 

a=1 
(2.4a) 

R 00 a *",. R 
Aij = .0 XRA ij WIth TrA = O. 

a=1 
(2.4b) 

Copyright © 1973 by the American Institute of Physics 759 
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Notice that for a unitary representation we have Xl :::: 
XL' therefore also A f/ :::: A ~j' 

The commutation relation satisfied by At and A~j can 
be deduced from (2.3) and from the relatlOns 

8 

(0ad0cb - 2/3 0abOcd):::: ~ A~bAgd 
",=1 

we obtain 

[At,A1zJ :::: Oil A;j - 0kJAft, 

[Afj ,A11]:::: - Oil A:j + 0kjAfl' 

[AfpArl] =: O. 

(2.5a) 

(2.5b) 

(2.6a) 

(2.6c) 

Then we can easily see that the Casimir operators for the 
group SL(3, C) are given as 

CIL :::: TrAZ,C2 :::: TrAl,C 1R :::: TrAA,C 2 =: TrA~. 
L R ~,n 

The operators C~,R commute with all At andA~j as 
well as all J 0: and K 0:' Thus, a general representation of 
SL(3, C) will be denoted by the set of 4 numbers (C n, 
C 2 L' C lR' C 2R ). 

A general finite transformation with the parameters w ex ' 

V 0:' ex:::: 1, .•. 8, is denoted by U, 

. (J K) . LX L . RX R 
U - t Wet a+Ucx a _ ta cx ex. tact a -e -e e , (2.8a) 

where 

(2.8b) 

We assign the following representations to the left- and 
right-handed generators: The 3 x 3 left-handed repre­
sentation is obtained by letting J 0: --'> 1/2A , 
Ko: --'> - i/2A ex, or equivalently X~ --'> A 0:/2, x-~ --'> 0, and 
similarly the 3 x 3 right-handed representation is ob­
tainedbylettingJa --'> -1/2A:, Ka --'> -i/2A~ or equi­
valently xt --'> 0, X! --'> -1/2A~. Thus, corresponding to 
the general transformation U we can write the 3 x 3 left­
handed representation A (letting a L :::: a~ == a) 

[

a b C] 
A(a) :::: e ia ./../2 :::: de f . 

ghk 
(2.9) 

The 3 x 3 right-handed representation is then, according 
to the above prescription, simply A *. Clearly, by con­
struction we have detA =: 1, (TrAo: = 0), and thus A 
corresponds to a general SL(3, C) representation. 

We would}ike to find the transformation properties of 
At and Aij under a general transformation U: 

= Aa(SatlXs) 

= (S-;'~AtI)X~ 
= eiaL.A/2 Arp-iaL.A/2X~ 

(2. lOa) 

(2. lOb) 

(2. 10c) 

(2.10d) 

(2.10e) 

In (2. lOa) we used [XL, XR] = O. In (2. lOb) we used the 
fact that X~ form the adjoint representation of SU(3) L' 

thus the expression in (2. lOa) induces an 8 x 8 linear 
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transformation on X~ which we denoted by SaB in 2. lOb. 
In (2.10c) we used the fact that the product AaX~ is an 
invariant when Aex and X~ are transformed in the same 
way; this can be seen immediately by analogy to the Casi­
mir operator C lL = X~X~. In 2. 10d we used the same 
reasoning as in paSSing from (2. lOa) to (2. lOb). 

Similarly we find 

(2. 11) 

The expressions in (2.10) and (2.11) can be also checked 
for an infinitesimal transformation directly by using 
the commutation relations (2.3) as well as those for Ao:' 

Finally, we note some identities which will be useful 
shortly. They can be derived as given in Ref. 10 and 
using Eqs. (2. 6): 

Ai + 3AL + (2 - 1/2 TrAL>AL 

- (1/ 3 TrA i + 1/2 TrAV = 0, (2. 12a) 

A~ - 3A~ + (2 - 1/2 TrA~)AR 

- (1/3 TrA~ - 3/2 TrA~) == 0 (2. 12b) 

3. THE Z-OPERATORS OF SL(3, C) AND THEIR 
CANONICAL CONJUGATES 

A. Definition and transfonnation properties of the 
Z -operators 

In this section we will find the Z i- operators and their 
canonical conjugates IIi for the left-handed SU(3) L cha­
racterized by At or X~. At the end of the section we 
will simply state the results for the right-handed SU(3)R 
since everything works just in the same way. From here 
on we drop the index L or R, Thus, we consider the 
operators Ai' arranged as a 3 x 3 matrix and having 
the commutation relation (2.6). We consider the opera­
tor eigenvalue equation 

(3.1) 

where 'l' is a 3-dimensional column with operator 
entries, and A is an operator proportional to unity. 
Applying (2. 12a) to 'l' we find that the eigenvalue A satis­
fies the cubic equation 

A3 + 3A 2 + (2 - 1/2 TrA2)A 

- (1/3 TrA3 + 1/2 TrA2) == O. (3.2) 

The roots of this equation Al' A2 , A3 satisfy 

A1 + A2 + A3 == - 3, (3.3a) 

(3.3b) 

(3.3c) 

Since TrA2 and TrA3 are Casimir operators, the roots 
Al> A2' A3 are functions of only Casimir operators, thus 
they commute with each other and with all XL and X~. 
Therefore, any representation of the left-han'ded SU(3)L 
can be characterised by two roots (Al> A2) or (Al> A3)' 
with A3 == - 3 - A1 - A2' 

We would like to find also the transformation properties 
of the operators 'l'; to do so, we apply U-1, U to both sides 
of (3.1), and use the fact that [A, U] == 0: 
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U-IAUU- 1iflU = AU-1'l!U. (3.4a) 

Using Eqs. (2. 10), we write 

AAA-l U- 1'l!U = AU-liflU. (3.4b) 

Applying A-I from the left we obtain 

(3.4c) 

Comparing (3.4c) to (3. 1) and taking the most general 
AI' A2 , A3 so that there is no degeneracy, we find 

ifl = (const) x A-IU-1>ltU (3.4d) 

or 

U-l+U = (const)A>lt. (3.4e) 

Now we define two Z operators Z 1 and Z 2 as 

Zl = 'Il l 'l!3-1 , Z2 = 'Il 2'l!3-1 , (3.5) 

where 'Il l . 2.3 are the 3 components of the operator co­
lumn matrixi'. 

From (3.4e) we immediately deduce the transformation 
properties of Z 1 and Z 2' We find that they transform 
according to a generalized projective transformation 

(3.6a) 

(3.6b) 

We will show shortly that [ZI' Z2] = 0, so we are justi.­
fied in writing (3.6) like rational functions, even though 
Z i are operators. The Aij have been defined in Eq. (2.9). 

In addition to Z 1 and Z 2 we can define two more Z opera­
tors Z 3 and Z 4' For this purpose we write another eigen­
value equation in analogy to (3.1). 

(3.7) 

Notice that now A operates from the right on the row 
matrix ~ T. Applying again (2. 12a) on ~ T from the right 
we find that TJ satisfies the same cubic equation as A, 
i.e., Eq. (3.2). Therefore, TJ is equal to one of the roots 
A1,A 2 ,A3 and is a Casimir operator. Going through 
similar steps to (3.4) we find 

(3.8) 

where A-I is the inverse of the matrix A (AA -1 = A -IA 
= 1). 

Now we define Z 3 and Z 4 as 

(3.9) 

From Eq. 3. 8 we obtain the transformation properties 
of Z3 and Z4' 

(3. lOa) 

(3. lOb) 

where we have defined 
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A-I == v. (3. 11) 

Again, we will show shortly that [Z3' Z4] = 0, so that it 
is legitimate to write the rational expressions of (3.10). 

We remark that Z l' Z 2' Z3' Z4 are not all independent, 
there is a nonlinear relation among them, which is ob­
tained as follows. USing (3.1) and (3.7) we can write 

+TA'l! = A+Tifl = TJ+Tifl. (3.12) 

Therefore, taking A ;0' TJ as the most general case we ob­
tain 

+nlt = 0 == ~1'I11 + ~2'l!2 + ~3'l!3 (3.13) 

multiplying (3.13) by ~il from left and 'l!i from the 
right 

(3.13') 
or 

(3.13") 

Thus, there are only 3 independent Z -operators. There­
fore, in the transformation equations (3.6) and (3.10) we 
should eliminate one of them, (say Z 4)' in favor of the 
others. In the following, for Simplicity, we shall con­
tinue to write our expressions in terms of Z 11 Z 2, Z 3' Z 4' 
but we should bear in mind that Z 4 is not independent 
and should be replaced everywhere by Z 4 = - Z 1 -

Z3Z 2' 

B. Explicit construction of the Z-operators 

Now we construct Z i explicitly as functions of the genera­
tors Xcx or equivalently Aij' The details of the construc­
tion are demonstrated in Appendix A. The result is 

Zl =K3~(A)Kln(A) =K1m(A + 1)K3;'(A + 1), (3. 14a) 

Z2 = K3;(A)K2n (A) = K 2m(A + 1)K3;' (A + 1), (3. 14b) 

Z3 =Kn2(TJ)K~1(TJ) =K-;;l(TJ + 1)Km3 (TJ + 1), (3. 14c) 

Z4 =Kn3(TJ)K~11(TJ) =K~;l(TJ + 1)K m3 (TJ + 1), (3.14d) 

m, n = 1,2,3, no sum over n or m, the expressions are 
equal for any value of n or m. The operators Kij(A) or 
K;/TJ) are given as 

i ;0' j, (3. 15a) 

i,j,k = 1,2,3 and cyclic or anticyclic,no sum over re­
peated indices. 

In Appendix A we give some interesting properties of the 
operators Kij(A), and we prove that 

[Zi' Zj] = 0 for any i,j = 1,2,3,4. (3. 16a) 

C. Canonical conjugates of the Z-operators, and the 
quantum mechanical analog. 

We have obtained three ZL-operators (zt is dependent) 
which commute with each other and which transform 
projectively as in Eqs. (3.6) and (3.10). We now wish 
to find their canonical conjugates TIf, TI~, ITt as func­
tions of the A t, which satisfy: 

[TIl; TIf] = 0, (3. 16b) 

[TIf, Z f] = - {jij' (3. 16c) 
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According to Eq. (A13) in the appendix it appears that 
the candidates which satisfy (3. 16c) are almost IIf = 
Afl' II~ = A~2' IIf = - A~l except that [A11' Z f] '" O. 
To correct this, we have to take 

IIf = Afl' 

II~ = Af2' 

II~ = - A~l + A~IZ~, 

(3. 17a) 

(3. 17b) 

(3. 17c) 

With this choice, we see immediately that Eq. (3. 16b) is 
also satisfied. This asymmetry can be traced also to 
the elimination of Z 4 as a dependent operator. 

At this point it is interesting to note the similarity of 
Z j and IT j to the quantum mechanical operators of posi­
tion and momenta. In fact, our procedure of finding the 
representations for SL(3, C) will be to define states 
which diagonalize Z f, just as the pOSition states in quan­
tum mechanics, on which II i act as derivatives a/ az f 
(just like momenta). This is why we went through all the 
trouble of finding commuting Z f operators (so that they 
can be diagonalized simultaneously) and their canonical 
conjugates IIf. 

D. Correspondence principle for SU(3)L ~ SU(3)R 

We finally mention the result. in the case of SU(3)R' The 
only difference is that the Ai operators have commuta­
tion relations with an extra minus sign Eq. (2.6), We can 
see that an easy way to deduce the results for SU(3)R 
from the OI\~S of .s:U(3) L' is to consider a correspondence 
prinCiple Ai <--7A ~t (this is an equ~ity in the case of 
unitary representations)" Since A it has the same com­
mutation relations as Ai, we can simply take the Hermi­
tian conjugation of the SU(3) L results and identify them 
with SU(3)R' (If any rearrangement is needed, one should 
remember the commutation relations. In this connec­
tion compare also Eqs. (2. 12a and 2. 13b.) Thus, we ob­
tain 

with 

[Zf,Z7] = 0 = [IIr, IIf], 

[IIr, Zf] = + I'Jjj' 

IIf = A~l' 

II1l = A~2' 
II~ = - A~l + A~IZ~, 

(3. 18a) 

(3. 18b) 

(3. 19a) 

(3. 19b) 

(3. 19c) 

Notice the difference between (3. 16c) and (3. 18b). In 
general, also, we should take Casimir operators for 
SU(3)R different than those for SU(3)L' It turns out that 
the correct correspondence principle is that at Hermi­
tian conjugation one should replace 

(3.20) 

This will then be consistent with AL.R and Tl L.R defined 
according to Eqs. 3.1 and 3.7. 

4. CONSTRUCTION OF THE SU(3)L,R INFINITESIMAL 
GENERATORS IN TERMS OF THE CANONICALLY 
CONJUGATE OPERATORS ZLR AND rrLR 

A. Representations of the generators 
Using only the commutation properties of the At} and 
Afj operators, we have constructed, in Appendix A and 
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Sec. 3, the canonically conjugate operators Z f·R and 
IIt·R, i = 1,2,3: 

[Zf,Z;] = 0 = [IIt, III], 

[IIf,z~] = - I'J jj etc. 

(4.1a) 

(4. Ib) 

In this section we consider the inverse problem: Given 
the simple commutation relations (4. 1), how do we 
construct the generators At,Afj in terms of the canoni­
cally conjugate operators Z f·R and II t· R? Again, first 
we consider the problem only for SU(3) L' Taking the 
Hermitian conjugation at the end, we obtain the analogous 
results for SU(3)R by the correspondence principle of 
Sec. 3. From here on we drop the index L, R. 

In general, we find two classes of representations for 
the generators A ij in terms of Z, II. The first class 
(class A) depends only on Z 1.2' and II I.2 and only on one 
Casimir operator A. The second class (class B) depends 
in addition to Z 3' II3 and a second Casimir operator TI. 

Class A: We notice that. if we completely ignore 
Z 3' II 3, then from the Appendix Eq. A1, we can solve for 
Al2,A23,A33' We already have A31 = II I ,A32 = II 2 • 

Thus, the only unknowns are All,Al2,A2VA22' which 
must be constructed from Z i' II i such as to satisfy the 
proper commutation relations [Eqs. A13 (e-f) and the 
trace condition TrA = O. We find the solution 

All = IIIZ I - A/2, Al2 = II 2Z I , 

A21 = II I Z 2 , A22 = II 2Z 2 - A/2. 

Then, from Eq. A1 we find 

(4.2a) 

Al3 = - IIIZj - II 2Z l Z 2 + (3/2)AZ v A31 = Ill' 

A 23 =- II2Z~ - II I Z IZ 2 + (3/2)AZ2 , A 32 := II 2 , 

A33 := A - IIIZ I - II 2Z 2 • (4.2b) 

These satisfy explicitly the commutation relations (2. 6a) 
and equations such as (2. 12a), etc., as they should do. 

We obtain the SU(3)R representations from the above 
by the Hermitian conjugation correspondence principle: 
For example, 

Art := (ZftIIft - AU2) -7 Af1 == ~fIIf + AR; 2). 

Using Eq. (3. 18b) we obtain 

Afl := IIfZ1 + AR/2 (4.3) 

and similarly for the rest. It turns out that the form is 
exactly the same as (4. 2) except that A L is replaced by 
-AR' 

Class B: When Z3 and II3 are also included in the 
representation, then the Eqs. A1 and A2 of the appendix 
and TrA = 0 give a complete solution of the A ij in terms 
of II i' Z j' With a little rearrangement we find 

All := IIIZ I + II3Z 3 + TI + 2, 

Al2 := II 2Z I + II3Z~ + (2T1 + A + 4)Z 3' 

Al3 := - IIIZj - II 2Z l Z 2 - II3Z 3(ZI + Z2Z 3) 

+ (A - TI - 2)ZI - (2T1 + A + 4)Z2Z 3' (4.4) 

A21 = - II3 + II IZ 2 , 

A22 = II 2 Z 2 - II3Z 3 - (7) + A + 2), 
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A 23 = - il2Z~ - il 1Z 1Z 2 + il 3(ZI + Z2Z 3) 

+ ('11 + 2A + 2)Z 2' 

A31 = il1> 

A32 = il 2 , 

A33 = A - il 1Z 1 - il 2Z 2• 

These again satisfy the commutation relations and Eqs. 
such as (2.12), etc. 
To obtain the representation for SV(3)R' again we appeal 
to the correspondence principle and Eq. 3. 20. The re­
sult is that the form is the same (with ilL --> ilR, Z L --> Z R)' 
except that '11 L + 2 --> - ('I1 R + 2), A L --> - AR' For exam­
ple, 

A~1 = il~Z~ + ilfZf - ('I1 R + 2), (4.5) 

etc. 

B. Equivalent representations 
We now make an important remark, that will lead later 
to the construction of the" metric" in the z-representa­
tion. According to Eqs. (3.2) and (3.3), there are three 
possible roots Ai corresponding to only two Casimir 
operators. In the representation of Eq. 4. 4 we have used 
the two roots, say, Al = A and A2 = '11. Thus, this repre­
sentation is labeled by the roots (A1O A2)' Clearly we are 
naturally led to expect that the representation labeled 
by (AI' A3)' where A3 = - 3 - Al - A2 (Eq. 3. 3), should be 
equivalent to the first one, since they both correspond 
to the same values of the Casimir operators C 1 = TrA 2 
and C 2 = TrA 3. Indeed, we have been able to find a 
similarity transformation in operator form which can 
take us from the (AI' A2) representation to (AI' A3)' 
By explicit commutation, we verify that 

il (-A2+A3) A (A A)il (A2-A3) = A (A A) (4.6) 
3 ij l' 2 3 Ij 1> 3' 

Thus, the operator n;A2+ A3 is analogous to a" metric" 
operator (not yet positive definite and Hermitian), 
which takes us from" covariant" representations (A l' A2) 
to" contravariant" ones (A 1> A3)' The analogous opera­
tor for SV(3)R is: il3-A2R+A3R, obtained again by the cor-

R 
respondence principle. As it will be seen below, for 
unitary representations the product operator 
[Il3t2L+A3Lil3~A2R+A3R] is indeed interpretable as a posi­
tive definite Hermitian metric operator, just as it was 
possible for SL(2, C).5 

5. THE IRREDUCIBLE Z-BASIS AND FINITE 
TRANSFORMATIONS 

In the previous section, we gave an operator represen­
tation for the infinitesimal generators of SV(3) L 181 
SV(3)R' In this section, we find the realization on the 
irreducible z-basis, which will then lead to a very sim­
ple representation for finite global transformations. 

In analogy to Ref. 5, we define the z-basis as the simul­
taneous eigenstates of the commuting operators C 1 L,R' 
C 2L R' Z iL R' This is a complete specification for an 
irreducible representation of SL(3, C). It is also quite 
analogous to the" position- space" commonly used in 
quantum mechanics, if we remember that Z i are like 
position operators, and ili like momentum operators. 

[

1 + i[2/3al1 - 1/ 3(a22 + a33 )] ia21 

A = ~a12 1 + i[2/3a 22 - 1/3 (a 11 + ~33)] 
la 13 la 23 
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There will be two classes of states: Class A and class B 
depending on whether Z 3 and il3 are included or not. 

We denote the z-basis simply as Iz). It actually stands 
for IAL,ARj'l1L,'I1RjZlL,Z2L,Z3L;ZlR,Z2R,Z3R)' The de­

pendence on z3 is removed for the representations 
L,R 

of class A. The operators Z j and il j are applied just 
like position and momentum: 

ZiLlz) = ZiL1z)j ZjRlz) = ZiR 1z ), 

iliLlz) = a/azjLlz)jiljRlz) =- a/azjRlz). 

(5.1a) 

(5.1b) 

These are consistent with the canonical commutation 
relations (3.16) and (3.18). (Notice the sign difference 
for il L,R') With the help of (5. 1) we can apply the infinite­
simal generators (4.2), (4.3), (4.4) and (4.5) on the 
states Iz). 

Thus, for the representations of class A (I Z) A) we find 

Af1Iz)A= (ZlLa/aZ1L -A/2)lz)A' (5.2a) 

Af2Iz)A=Zl a/az 2 IZ)A,etc, 
L L 

(5.2b) 

and for the representations of class B we find 

AL IZ)B=(ZI a/az 1 +z3 a/az 3 +'I1 L + 2)lz)B,etc. 
11 L L L L (5.3) 

Now we are ready to calculate the effect of a finite trans­
formation V = eja.XLeia*.xR on the states I z). We re­
call that the 3 x 3 representation of V is A, as given by 
(2.9). 

Let us first notice that with the help of (3.6) and (3.10) 
we can write 

aZ 1 L + b Z 2 L + c 
ZlLVlz) = VV-IZlLVlz) = V Iz) 

gZlL + hZ2L + k 

az iL +bz 2L +c I = V z). 
gZlL + hZ 2L+ k 

(5.4) 

Similarly for the other Z iL,R' Therefore, the state 
Viz) is an eigenstate of the operators ZiL,R with the 
eigenvalues z' lL = (az lL + bz 2L + c) (gz lL + hZ2L + 
k)-l, z'lR = (a*zlR + b*z2R + c*)(g*ZlR + h*z2R + k*)-l 
etc. These transformation properties could only be 
consistent if we let Z R = zi" and we must write in general 

V(A)lz) =n(A,z)lz'), (5.5) 

where Iz') stands for a state with transformed labels 
z' j as indicated by (3.6) and (3.10) [the right-handed 
ZjR = ZTL (transforming with A*)], and n(A,z) is just a 
multiplicative functions of the complex z j and the trans­
formation parameters A. Clearly we must have n(l, z) 
=1. 

To find the finite transformation of the states we simply 
have to specify n(A,z). We first find the infinitesimal 
form of n, by applying an infinitesimal transformation: 
U(A) = 1 + ia j .Af· + ia;;11·, with a j . small. Then, the 
left-handed 3 ~ 3 Jrepresentation is Jgiven by replacing 
the 3 x 3 representation of Afj --> (ij)(i I - 1/3 1) and 
letting A~j --> O. [This representation of A~ is, of course, 
consistent with the commutation relations \2.6a)]. 

(5.6) 
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The inverse of A, denoted by V, is obtained by changing 
the sign of aij" Then we can write 

z{ == Zl + i{(all - a33 )zl + a 21z 2 - a13z~ 

- a 23z 1Z2 + a 31}, (5.7a) 

Z2 == Z2 + i{a 12z 1 + (a 22 - a 33)z2 + a32 

- a 13z 1z 2 - a23z~}, (5.7b) 

Z3 == Z3 + i{(all - a 22 )z3 + a 23 (z1 + Z2Z3) - a 21 

+a12z~ -a13z 3(z1 +Z2Z 3)}' 

etc. Also, 

(5.7c) 

n(A,z) == [1 + ai/anlaaij)laij=O + aT/anlaaTj)larj=o], 

OZ' 0 OZ'* 0 
Iz') = Iz) + a .. _ k -Iz) + a*._k -Iz) 

'J" 'J * * . oai} uZk oai} aZ k 

Combining (5.7-9), we can write 

Comparing 5. lOa and 5. lOb, we finally obtain 

-I + _k_ Iz) == iA~ Iz) o 0.". 'i' (

On oz'· 0 ) 

oat} aij oZ k 

(5.8) 

(5.9) 

(5. lOa) 

(5. lOb) 

(5. lla) 

(5.11b) 

The right-hand side of (5.11) is known from (5.2-3); 
thus, we get information about the derivatives of n. In 
fact, we find that with infinitesimal A (and V), n is given 
for class A, B as 

nA == (A31z 1 + A32z 2 + A33)3/2AL 

x (A* z* + A* z* + A* )3/2AR (5.l2a) 31 1 32 2 33 , 

tlB == (A
31

z
1 

+ A 32z 2 + A33)~L+2AL+2 
X (A* z* + A* z* + A* )~R+2AR+2 

31 1 32 2 33 

X (V31Z4 + V 21z 3 + Vl1r2~L-AL-4 
x (V* z* + V* z'- + V* )-2~ R-"-R-4 

31 4 21 3 11 

(5.l2b) 

We can check that this form of n has the group property, 
as it should, namely: 

== neAl> z)n (A 2' A 1z) 1 (A 2A 1)z) 

== n(A 2Al> z) 1 (A 2A 1 )z) 

== U(A 2A 1) Iz). 

(5. l3a) 

(5.l3b) 

(5. l3c) 

Therefore, by applying successive infinitesimal trans­
formations, we can integrate (5.12) to obtain the same 
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formula as above, but now with finite A. Thus (5.5) and 
(5. 12) give a very simple expreSSion for all represen­
tations of SL(3, e). 

6. COVARIANT AND CONTRAVARIANT KET AND 
BRA VECTORS AND INVARIANT BILINEAR 
FUNCTIONALS 

The states Iz) labeled with the two sets of roots Af,R == 
AL.l/., Af,R == 1/L,l/. of Eq. (2.12), (3. 2), (3.3), and trans­
forming as specified in (5.5) and (5.12) will be called 
covariant kets. Thus a covariant ket is characterized 
by the set of four numbers (AL' 1/VAR' 1/R)' We now in­
troduce the contravariant kets, as the states Iz), labeled 
by Ar·R == A L •R and At·R == pL.R. (the third root), which 
transforms like Iz), but with pL.R replacing 17 L •R • Notice 
that pL.R. are not independent, and must satisfy 

Thus, the contravariant ket is characterized by (A L' P L; 
AR' PR.)' 

We define a metric operator G, which transforms the 
covariant kets to the contravariant ones: 

Iz)==Glz). 

(6.2) 

(6.3) 

Of course, G = 1 for class A, thus, for this class there is 
no distinction between covariant and contravariant states. 

Indeed, we find, by virtue of Eq. (4.6), that Iz) differs 
from Iz) in its transformation properties only by the 
change 17 L •R +-+ pL.R.. 

Now, we define covariant bras by the normalization condi­
tion (it should be emphasized that we do not identify a 
bra state with the naive Hermitian conjugate of a ket 
state): 

(w Iz) = O(w - z)O(w· - z*). (6.4) 

The transformation properties of <w 1 must be consis­
tent with Eq. (6. 4). Defining 

(w 1 U-1(A) == &'leA, w)(w' I, 

we find 

(w Iz) == (w 1 U-1(A)U(A) Iz) 

= &'leA, w)n(A, z)(w' Iz'), 

which gives 

(6.5) 

(6.6a) 

(6.6b) 

O(w - z)O(w· - z*) == n(A, w)n(A, z)O(w' - z')O(w'* - z '*), 
(6.7) 

By considering Eqs. (3.6) and (3.10) we find, for class A 

0(2)(z' - w') = 15(2)(z - w)(A
31

Z 1 + A 32Z 2 + A33 )3 
(6.8a) 

and for class B 

o (3)(z, - w') == 0(3)(Z - W)(A 31z 1 + A 32Z 2 + 1\33)2 

X(Vll + V 21z 3 + V31Z 4 )2. (6.8b) 

Thus, we solve for ~(A, w): 

rt ( )-3/2 A -3 
uA = A 31W1 + A32w 2 + A33 L 

x(A* w* + A* w* + A* )-3/2"-R.-3 (6.9a) 
31 1 32 2 33 ' 
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(6.9b) 

We have thus obtained the transformation properties of 
the bra vector (w I. We see that, if the ket vector trans­
forms like (A L' 11 L; All.' 11 R)' then the bra vector trans­
forms like (- AL - 2,- TiL - 2;- All. - 2,- Til/. - 2). 
While the naive Hermitian conjugate of the ket vector 
denoted by (Iz»+ would transform according to (A~, 11~, 
At 11i,), which in general is different than the transforma­
tion properties of the bra vector (z I. This is due to 
the presence of a nontrivial metric operator G. 

Similarly, we can define contravariant bras (w I 

(w Iz) = 6(w - z)6(w* - z*), (6.10) 

which transform like (- AL - 2,- P L - 2;- All. - 2,­
PR - 2). 

The covariant and contravariant bras are related to each 
other by 

(WIG-l = (wi. (6.11) 

Thus, we find that the matrix elements of G between co­
variant states are equal to the overlap functions between 
covariant bras and contravariant kets, etc.: 

(wlz) = (wIGlz) = (wIGlz) == G(w,z), 

(wlz = (wiG-liz) = (wiG-liz) == G(w,z). 

(6. 12a) 

(6. 12b) 

We will explicitly evaluate these matrix elements in 
Sec.8. 

We finally note that the normalization conditions (6.4) 
and (6.10) imply the completeness relations 

(6. 13a) 

= j(d2z i )(d
2w i)lz)(zlw)(wl = j(d 2z j )(d2wj)lz)G(z,w)(wl 

(6. 13b) 

= j (d 2z j)(d 2wj) I w)(w Iz)(z I = j(d 2z j)(d 2 w j ) Iw)G(z, w)(z I. 

(6. 13c) 
These can be used to define invariant bilinear products 
in the group. For example, we consider the "wave­
packets" 

(>lI1 = j(d 2z j)>lI (z)(z I, 

I</» = j(d 2z j )</>(z)lz), 

I x) = j(d 2z j )x(z) Iz), 

which transform as 

(>lI'1 = (>lI1 U-l(A), 1</>') = U(A) 1</», 

(6. 14a) 

(6. 14b) 

I X') = U(A) I X>. 
(6.15) 

From the transformation properties of the states (z I, 
Iz) and Iz) we deduce those for the "vector components" 
I/I(z) and </> (w): 

x(z)--7 x'(z) = (P·.~(A,z)X(z'), 
I/I(z) --7 I/I'(z) = UA.~ (A, z)l/I(z'), 

</> (z) --7 cp'(z) = QA.P (A, z)cp(z'), 
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(6. 16a) 

(6. 16b) 

where we have indicated also the dependence on the 
roots A, 11, p, etc., and, U, &'l are given in (5.12) and (6.9). 
That is, I/I(z) transforms like (A L' 11 L; TIll.' AR), cp (z) trans­
forms like (- AL - 2,- P L - 2;- All. - 2,- PR - 2) and 
x(z) like (- AL - 2,- l1L - 2;- All. - 2,-'Tl L - 2). For 
functions transforming according to (6.16), we can easily 
write invariant bilinear functionals (1/11 </» and (1/11 x> by 
using (6. 13): 

(1/11 </» = j(d 2z j)(d 2w j)( I/Ilz) G(z, w)(w I</» 

= j(d 2z j)(d 2w j )l/I(z)G(z, w)</>(w), 

(1/11 x> = jd 2z(l/Ilz)(zlx> 

= jd 2zl/l(z>X(z). 

7. UNITARITY CONDITIONS 

(6. 17a) 

(6. 17b) 

(6. 18a) 

(6. 18b) 

To impose unitarity, it is enough to demand that the 
generators J a) K ex of Sec. 2 be Hermitian 

G-lJ~G = J ex' G-lKixG = Kex' (7.1) 

Where, in general, G is the metric of the representation. 
This means that G-lX~+G = X~, or from Eq. (2.4) 

G-lAI/G = Afj' (7.2) 

We further apply the condition (7.2) to the Casimir 
operators, and obtain 

(7.3a) 

qL = G-l (TrA1)+G = TrA~ - 3 TrA~ = C2 l/. - 3Cll/.' 

(7.3b) 
Now considering Eqs. (2. 12b), and (3.1), we can write 

A~i + 3A~i + (2 - 1/2C!L)ARj + (1/3qL - 1/2CiL) = 0 

(7.4) 
Replacing from (3.3), we obtain the cubic equation 

A~j + 3A~j + (AiLA~L + A~LA~L + A~LAiL)ARj + AiLA~LA~L 

+ 2(AiLA~L + AiLA~L + A~LA~L) - 4 = D. (7.5) 

Remembering (3. 3a), this can be written in the form 

(ARj + AiL + 2)(AR j + A~L + 2)(ARj - AiL - A~L - 1) = O. 
(7.6) 

Therefore, according to the unitarity condition (7.1), a 
representation labeled by the numbers (A L' 11 L; All.' l1 R ) 

cannot have arbitrary complex numbers as its labels, 
but they must satisfy one of the following sets of condi­
tions (7a-f): 

AR=-Ai,-2, l1 R =-11i,-2, 

All. = - Ai, - 2, TIll. = + Ai, + Tii, + 1, 

AR = - 11~ - 2, l1R = - A 1- 2, 

AR =-111- 2, l1R=A~+111+1, 

AR=11i,+A1+ 1, Tl R =-Ai,-2, 

A1/.=111+A1+ 1, l1R =-111-2. 

(7.7a) 

(7.7b) 

(7.7c) 

(7.7d) 

(7.7e) 

(7.7f) 

Further restrictions are obtained if we realize that the 
generators J ex form an SU(3) compact subgroup. There-



                                                                                                                                    

766 Itzhak Bars: Projective representations of SL(3,C) in the Z-operator formalism 766 

fore, the third components of its isospin and U-spin sub­
groups,J3 and - 1/2J3 + v'3/2Js' have hali-integer 
eigenvalues; while its hypercharge Y = 2/v'3Js has 1/3 
integer eigenvalues (e.g., quarks). These operators are 
given as 

J3 = 1/2(Afl - A~2 + Afl - A~2) 

= 1/2 (TIlLZ 1 L + TIlRZ 1R - TI 2LZ 2L - TI2R Z 2R) 

+ (TI3LZ 3L + TI 3RZ 3R) + (1/L -1/R) + 1/2(;"L - AR), 

(7.8a) 

- 1/2J3 + ../3/2Js = 1/2(Afl -Ar3 + Afl -A~3) 

= (TI1£Z 1£ + TIlRZ 2R) 

+ 1/2(TI2LZ 2L + TI 2RZ 2R + TI3LZ3L + TI 3RZ 3R) 

+ 1/2 (1/ L - 1/R) - 1/2 (A L - AR ), (7.8b) 

Y = - (Af3 + Ag3) 

= (TIlLZlL + TI lRZ2R + TI2LZ 2L + TI 2RZ2R) - (AL - Ait)· 

(7.8c) 
We see now easily that the state Iz = 0) is an eigenstate 
of these operators. Thus, we must take (1/ L - 1/R) + 
1/2(AL - AR) and 1/ 2(1/L -1/R) - 1/2(AL - AR) half inte­
gers, and (A L - AR), 1/3 integer. The most general solu­
tion for class B is then 

AL - A1< = t(n - 2m), 

1/ L -1/R = -}(n + m), m, n == integers. 

(7.9a) 

(7.9b) 

For the representation of class A, the condition is sim­
pler: 

(7.10) 

The most general classes of solutions compatible with 
7.7 and 7.9 or 7.10 for class Bare 

A L = ! (n - 2m) - 1 + ia, 1/ L = ~ (n + m) + 1 + ib, 

AR = - Ai - 2, 1/R = -1/i - 2, (7. 11 a) 

AL == - m/3 - 1- ia, 1/L == m/6 - ~(2 + c) + ia/2, 

AR= Ai 2, 17R=A1+1/j,+I, (7.11b) 

AL = - n/6 - ~(2 + c)- ia/2, 1/L = n/3 - 1 + ia, 

AR =A!+1/!+I, 17R==-1/L-2 (7.llc) 

with a, b, c arbitrary real numbers. For class A, we 
simply ignore 17 L' and put n == O. We have thus obtained 
some necessary conditions for the representations of 
the type (4.2), (4.4) or (5.12) to be unitary. Further 
restrictions will come from demanding a positive defi­
nite Hermitian scalar product, as discussed in the next 
section. 

8. HERMITIAN, POSITIVE DEFINITE SCALAR 
PRODUCT 

For a unitary representation, we must specify a Hermi­
tian, positive definite scalar product. Thus, we consider 
two functions + 1 (z) and + 2 (z), transforming according 
to the general representation (A L' 1/ L; A R , 1/ R) ,like a co­
variant ket, as in Eq. (6. 16a). The complex conjugate 
of, say, the first function, + 1 (z)*, then transforms as 
(A~, 1/~ ; Ai, 1/j), [see Eq. (5.12)]. Using Eqs. (7. lla-c) 
and (6.1), we find three cases for class B): 
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1. (A ~ , 17~; Ai, 171) 

= (- AL - 2,-1/£ - 2;- A}< - 2,-1/}< - 2), (8.1a) 

2. (Al, 1/;; At, 171> 

= (- A £ - 2, - P L - 2; - A}< - 2; - P R - 2), (8.1b) 

3. (A~, 17~; A 1, 1/1) 
= (- P £ - 2,-17£ - 2;- PR - 2;-1/}< - 2). (8.1c) 

We call case 1 the principal series and case 2 the sup­
plementary series and integer points. Comparing the 
definition of covariant and contravariant kets and bras, 
we see that, in a unitary representation, + i (z) transforms 
like a covariant bra in case 1, and like a contravariant 
bra in case 2. We have not defined a name for case 3. 
Thus, according to Eqs. (6. 17) and (6.18), we can write 
the invariant scalar products, provided the integrals 
converge 

(+1' +2) = Jd 2z i d2w i+i(z)G(z, W)+2(w) (8.2) 

where, for case 1 we simply take G(z, w) = l5(z - w) 
and for case 2, the operator G is now given as 

(8.3a) 

According to (7. 2), we can write TI3 R = TI3 £ + , therefore 

(8.3b) 

is a positive definite operator! Thus, the function 
G(z, w) = (z IG Iw) is positive definite, and therefore the 
scalar product of (8.2) is positive definite and Hermitian, 
for the principal series, supplementary series and inte­
ger points of cases 1 and 2. For case 3 we have not 
found a metric operator analogous to G, thus we cannot 
write a unitary scalar product for this case. 

It is not hard to evaluate the matrix elements of the 
operator G. As in Ref. 5, we define the TI3 - representation, 
in which TI3 rather than Z 3 is diagonalized. The TI3 and 
Z3 representations are related by a Fourier transforma­
tion, which allow the evaluation of G(z, w): 

r(1 + c) 
G(z,w) = (z!(TI3LTI3:vclw) = ( ) IZ3-W31-2C-2. 

1Tr - c (8.4) 

This expression now allows us to discuss the different 
explicit forms of the scalar product defined in Eq. (8. 2), 
by taking appropriate limits of the Casimir operators. 

Class A: +1 (z) and +2(z) transform as in Eq. (5.12), 
with 

A£ = - tm - 1 + ia, AR = tm - 1 + ia. (8.5a) 

We can write the scalar product 

(+1' 1JJ 2) = Jd 2z l d 2Z 2 +t(Z)+2(z). (8.5b) 

For convergence, we demand that +11 +2 are L (2) func­
tions. 

Class B: +1 (z) and +2(Z) transform as in Eq. (5. 12) 
with (A L' Tl L; AR, Tl R ) specified as below for the various 
representations. 

1. Principal series. 

A£ = i (n - 2m) - 1 + ia, 17£ = ~ (n + m) - 1 + ib, 
(8.6a) 
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~R = - ~ (n - 2m) - 1 + ia, TJ R = - ~ (n + m) - 1 + ib, 
(8.6b) 

(8.6c) 

For convergence, we must have 1/1 v 1/12' L (2) functions. 

2. Supplementary series. 

m 1 . 
~L = -3 - -la, 

m 1 . 
~R =3- - la, 

m 1 .a 
TJ L = 6" - 2(2 + c) + l2' 

m 1 (2 ) .a 
TJR = - 6" - 2 + c + l2' 

(8.7a) 

(8.7b) 

If 1/1 1,1/12 are L (2) functions, then the integral converges 
only for 

o<lcl<1. (8.7d) 

3. Integer pOints. For an analogous situation in SL(2, c) 
and a discussion of such representations we refer to 
ref. 5. Here we only mention the result. ~ L> TJ L' etc., are 
as in (8.7) with c = integer. 

Case a: c = k, k being a positive integer or zero. 

a2k 
(1/11,1/12)= (-1)kJd2z1d2z2d2z3I/1j(z) k(J *kI/l 2(Z). 

(Jz3 z3 (8.8a) 

The functional space is restricted to functions such that 

(8.8b) 

Case b: c = - k,k being a positive integer. 

(1/11,1/12) = {2(- l)k/7T [r(k )J2}J d 2z 1d2z 2d2z 3d2W 3 

X 1Z3 - w3 12k- 2 loglZ3 - w311/1~(zl>Z2,z3)1/I(zl,z2,W3). 

(8.9a) 
The functional space is restricted to functions such that 

(8.9b) 

for r, s .;; k - 1. 

We have thus classified the unitary representations of 
SL(3, C), and have given the explicit transformation 
properties and the Hermitian positive definite scalar 
products. Our operational method yielded the form of 
the scalar product for the principal and supplementary 
series as given by Gel'fand and Naimark.2 In addition 
our method has given consistent normalization factors 
due to the normalization condition of Eq. (6.4). Further, 
it has unified all scalar products, for all representations, 
in a single closed expression (8.2) and (8.4), from 
which the various scalar products are obtained by taking 
the appropriate limits. 

APPENDIX 

In this appendix we construct the operators Z i and show 
that they commute with each other. We also give some 
interesting properties of the operators K ij • With the 
help of these we also find the commutation relations of 
Aij with Zk. 
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In the following, we shall need to write inverses of cer­
tain operators. Throughout, we shall assume that. the 
inverses do exist by interpreting them as operatmg on 
a complete set of'states for which the inverse is defined. 

Starting with Eqs. (3. 1) and (3.7) and multiplying the 
first one from the right by ~i and the second from the 
left by <P31 , we obtain explicitly 

(Ala) 

(Alb) 

Since we are dealing with operators, we wish to detail 
our procedure carefully. We have six equations satis­
fied by ZVZ2,Z3,Z4. Using the set (Ala) w~ can solve 
for Z 1 by eliminating Z 2 from any two equatlOns, and 
similarly, we can solve for Z 2. Of course, t.he solutions 
obtained in this way for Z 1 must be compahble no mat­
ter which set of two equations is used to eliminate Z 2. 

In eliminating Z 2 one must be careful that Aij are opera­
tors which do not commute. For example, supposing we 
want to eliminate Z 2 by using the first and second rows 
in Eq. Ala): 

(All - ~)Z1 + A 12Z 2 + A 13 = 0, 

A 21Z 1 + (A22-~)Z2 +A23 =0. 

(A2a) 

(A2b) 

We multiply (A2a) from the left by (A 22 - ~ - 1) and 
(A2b) from the left by - A 12, and add the resulting equa­
tions. Since (A 22 - ~ - 1)A 12 = A12 (A 22 -~) the 
Z 2 terms cancel and we get 

[(A 22 - ~ - l)(A ll -~) -A1021]Z1 

+ [(A 22 - ~ - 1)A13 - A 1023] = 0, (A3a) 

from which we obtain Z 1 in terms of A ij. Thus, 

Z1 = [- (All - ~)(A22 - ~ - 1) + A 1021]-1 

x [(A 22 - ~ - 1)A13 - A 1023]. (A3b) 

Similarly, we could have used the first and third rows, 
or the second and third rows, which would have given 
different expreSSions for Z 1. All of these solutions 
must be equal to each other. Here we give the result 
in a compact form. We define some new operators K ij: 

(A4a) 

(A4b) 

i,j, k = 1,2,3 and cyclic or anticyclic, no sum over re­
peated indices. We notice that Kij(~) is almost the co­
factor matrix transposed of the matrix in (Ala), but not 
quite. This is because Aij are noncommuting operators 
rather than numbers. 

In terms of Kij we can write Z i in a compact form as 

(A5a) 

(A5b) 
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Z3 = Kn2 (I'/)Kn1(17) =K;J-l(17 + I)K m2 (17 + 1), (A5c) 

Z4 = Kn3 (17)Kn1(17) = K;J-l(17 + I)K m3 (17 + 1), (A5d) 

n, m = 1,2,3, no sum over repeated indices. 

The three values of n, m = 1,2,3 correspond to taking 
different sets of equations in order to solve for Z i' They 
are all equal to each other as will be shown below. The 
second expression for each Z i is obtained due to certain 
properties of the K ij' We will also show that [Z i' Z j] = 0 
for any i,j. All of these claims will be proven below. 

The operators K;/>..) have the following interesting pro­
perties. They can be easily checked by explicitly using 
the commutation properties of Aij [Eq. (2.6)]. 

[Aij' K 1m(>..)] = 6imK 1j(>..) - 61~im(>"), 

Kij(>..)K1m(>.. + 1) = Kl/>..)Kim(>" + 1), 

K ij (17 + I)K1m (17) = K im(17 + 1)K1j (17), 

3 

~ Kin (>..)K mi(17) = 0, 
i= 1 

3 

2] K mi(17 + I)K;n(>" + 1) = 0, 
;= 1 

3 

.0A;K)>.. + 1) =AKil (>.. + 1), 
j= 1 J J 

3 

.0 K;j(17 + l)Ajl = 17K i/(17 + 1). 
j= 1 

No sum over repeated indices unless shown. 

(A6a) 

(A6b) 

(A6c) 

(A6d) 

(A6e) 

(A6f) 

(A6g) 

We obtained (A6a-c) by direct commution of the Aij' 
These three equations are enough to show that Z; are 
equal for each n, and also that [Z l' Z 2] = 0 = [Z3' Z 4]' 
We rewrite (A6b) as 

(A7a) 

Taking l = 3, i = 1, 2, we see that the second expressions 
for Z 1 and Z 2 are the same as the first for arbitrary j, 
m. Now we can write Z 1 as given by Eq. (A5a): 

ZI = K-h(>..)K I3 (>..) 

= K I3 (>.. + I)K31(>.. + 1) 

= K31 (>..)K 11 (>..). 

In writing the second line we used (A 7a) with l = 3, 

(A7b) 

j = 3, i = 1, m = 3, and in writing the third line we 
used (A7a) once more with l = 3, j = 1, i = 1, m = 3. 
Therefore, (A 7b) shows that the expressions for Z 1 with 
n = 3 and n = 1 are equal to each other. Similarly for 
Z 2' and for all values of n, m. Now we calculate the 
commutator 

[ZI,Z2] = Z1 Z 2 - Z2Z 1 

= K3~ (>..)K In (>..)K2m(>.. + I)K3'm(>.. + 1) 

-K3~(>..)K2n(>..)Klm(>" + I)K31m(>.. + 1) 

= K3~ (>..)[K1n (>..)K2m (>.. + 1) 

- K 2n (>..)K 1 m(>" + 1)]K3Im(>" + 1). 

Using (A6b) we find 

[Zl,Z2] =0. 
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(A8a) 

(A8b) 

The same things can be proven for Z 3 and Z 4 by using 
Eq. (A6c) instead of (A6b). 

Equation (A6e) is obtained by replacing in (3. 13c) the 
second expressions in (A5). Similarly, (A6f) and (A6g) 
are obtained by replacing (A5) in (AI). 

To obtain Eq. (A6d), we first write the identity 

K 1m (>.. + 1) = K 1m (17) - (>.. + 1-17)[A1m + 6Im (>.. + 17 + 2)] 

and replace it in (A6b), to get 
(A9a) 

K ij(>..)K1m(1/) = K1j(A}Kim(A + 1) 

+ (A + 1-1/)Kij (A)[A 1m + 61m(A + 1/ + 2)]. (A9b) 

We then let i = m, sum over i = 1,2,3, and replace in 
the resulting equation 

TrK(A + 1) = (1/ - A - 1)(2A + 1/ + 4), (AI0) 

which is evaluated with the help of (A9a), (A4b), (3. 3a-b), 
and the fact that A and 1/ are roots of Eq. (3. 2). With 
all that, Eq. (A9b) becomes 

[; Ki/A)K/i(1/) = (>.. + 1 - 1/) {- Kl/A)(A + 2) + Kjj(A)AIJ. 
, (All) 

The expression in the brackets on the right hand side 
is equal to zero as can be seen by direct calculation . 
Thus, we obtain Eq. (a6d), 

.0Kij(>..)K1i(1/) = O • , 
At this point we are ready to prove that Zv Z 2' and Z 3' 
Z4 all commute with each other. We already have lZl' 
Z2] = 0 = [Z3,Z4]' To prove [Z2,Z3] = 0, we start by 
rewriting Eq. (A6e) as 

K m2 (1/ + I)K2n (>.. + 1) =-Km1 (1/ + I)K In (>.. + 1) 

- K m3 (1/ + I)K3n (>.. + 1). (AI2a) 

Then using (A 7a), we find 

= - K ml (1/ + I)K3~ (>..)K In (>..)K3n (A + 1) 

- K ml (17 + l)Km3 (1/)K-;;l (17)K3n (>.. + 1), (AI2b) 

= - K ml (1/ + I)K3~ (>"){K In (>..)K ml (1/) 

+ K 3n (A)K m3 (1/)}K-;;l (1/)K3n (>.. + 1) (AI2c) 

and using (A6d) we find 

= K ml (1/ + I)K31 (>..)K 2n (>..)K m2 (17)K;;l (1/)K3n (>.. + 1). 

(AI2d) 

Multiplying from the left by K-;;I (1/ + 1) and from the 
right by K3~ (A + 1) and using (A5), we obtain 

(AI2e) 

which gives 

(AI2f) 

By similar operations, we obtain [Z 1> Z 3] = 0, and then 
using (3. 13c) we obtain 

(AI2g) 

which is the desired result. 
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Now we calculate the commutation relations of Aij with 
Zk' Using (A5) and Eq. (A6a), we find 

(A13a) 

(A13b) 

(A13c) 

(A13d) 

rAll,Zll =-Zl,[A21 ,Zll =-Z2,[A31,Zll =-1, 

[A 13 ,Zl] = Zj,[A23,Zll = Z lZ2' (A13e) 

[A 12 ,Z21 =- Zl,[A 22 ,Z21 =- Z2,[A 32 ,Z21 =- 1, 

[A 13 'Z21 = Z l Z2' [A 23 ,Z21 = Z~, (A13f) 

[A 21 , z31 = + 1, [A 22 , Z3] = + Z3' [A 23 , Z3] = + Z4' 

[A 12 , Z31 = - Z~, [Au, Z31 = - Z3Z4 (A13g) 

[A31,Z41 = + 1, [A32,Z41 = + Z3,[A 33 , z41 = + Z4' 

[A12,Z4]=-Z3Z4,[A13,Z4] =-Z~. (A13h) 
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Finite-contour dispersive inequalities are derived for a function f(~) which is analytic in the ~ plane 
except for a right-hand cut. Inequalities are also derived for the derivative of the function. These 
inequalities are rigorous and the sharpest ones that can be derived using only analyticity. 

1, INTRODUCTION 

Dispersion relations were originally introduced as gen­
eral restrictions imposed by causality on an amplitude. 
To exploit these restrictions by using the dispersion re­
lations in a computational sense, one must know the ab­
sorptive part of the amplitude on the cut and its behav­
ior at infinity. If, however, only a limited amount of in­
formation about the amplitude is available then in lieu of 
dispersion relations, i.e., dispersive equalities, one can 
study dispersive inequalities. These inequalities usually 
require only knowledge of an upper bound for the modu­
lus of the form factor on the cut. In several cases these 
inequalities are stringent enough to place meaningful 
constraints on theoretical constructs. 1 

In this paper we derive a set of finite-contour disper­
sive inequalities. Specifically, we will consider a func­
tion f(t), a form factor for example, which is the boundary 
value of a function f(~) real-analytic in the disc I ~ - to I 
.:; R except for a branch cut on the positive real axis 
from ~ = toto ~ = to + It. Upper bounds for If(s) I and 
I df(s)/ds I (s < to) will be found in terms of weighted in­
tegrals of an upper bound for If(t) I along the cut and of 
the modulus of fW on the ring I ~ - to I = R. The con­
struction of this type of inequality was motivated by the 
development of finite-energy sum rules 2 and the tech­
niques we use are very similar to Okubo's. 3 

Finite-contour dispersive inequalities have several nice 
properties. One does not need to worry about the asym­
totic behavior of f(~) nor its singularities for I ~ - to I 

B 

FIG. 1. Closed contour C in the complex ~ plane for 
the dispersion integral in Eq. (2. 1) 
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FIG. 2. Complex v plane. 
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> R. Furthermore, they should serve as a useful tool for 
correlating the low-energy and high-energy properties 
of form factors. This is an important consideration 
since a good asymptotic description for a form factor 
does not always lead to the correct couplings and models 
which give the proper couplings do not always have a 
suitable asymptotic behavior. This is the sort of trouble 
one encounters when constructing Veneziano type models 
for form factors. 4 Since our inequalities are rigorous, 
every model must satisfy them. 

The paper is organized as follows: In Sec. 2 inequalities 
for the analytic function itself are derived. Inequali-
ties involving the derivative of the function are then con­
structed in Sec. 3. A certain type of integral encountered 
in the analysis is evaluated in the Appendix. Our prin­
ciple results are contained in Eqs. (2.24), (2.25), (3.11), 
and (3.12). 

2. INEQUALITIES FOR THE ANALYTIC FUNCTION 

Our function f( ~), analytic in I ~ - to I .:; R except for a 
branch cut on the positive real axis from ~ = to to 
~ = to + R, is assumed to be "real" so that f (~*) = f*(~) 
in this cut disc. For -R + to < s < to we have the re­
presentation 

f(s) = ~ I d~ f(~)CP(O 
. 2ni c ~_- s 

(2.1) 

where the closed contour C is indicated in Fig. 1 and 
cp(~) is any function analytic in the cut disk I ~ - tol .:; R 
satisfying the requirements that the integral in Eq. (2. 1) 
exists and that cp(s) = 1. We assume further that the in­
equality 

p(t) "" w(t)lf(t)12 (2.2) 

is satisfied for t ~ to, where p(t) is some positive spec­
tral function and w(t) is a known (kinematic),positive­
definite factor which we take to be of the form 

(2.3) 

where k,a, and b are constants. This form for w(t) is 
sufficiently general to apply to most situations; it will be 
apparent how the analysis can be altered to include other 
forms. We now map the cut-disk I ~ - to I .:; R onto the 
upper half-plane Imv "" 0 by means of the conformal 
transformation 

V =[R1I2 + (~ - t o)1I2J2 
Rl/2 _ (~ _ t

o
)1I2 

(2.4) 

We note the following properties of this transformation 
(see Fig. 2): 
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(i) The contour C is mapped onto the real v axis such 
that the points ~ =R + to + iO, -R + to, R + to -iO, 
and to correspond to the points v = ± 00, - 1, 0, + 1 
respectively 

(ii) The pOints ~ = s and ~ = 0 are mapped onto the 
pOints v = exp(i(3), and v = exp(i(3') respectively, 
where 

tan2(f3/4) = (to - s)/R, 

tan2(i:J'/4) =to/R. 

The integral Eq. (2. 1) can be rewritten as 

(2.5a) 

(2.5b) 

1 +"" f(s) = -. J dvF (v )cp(v)jJ. (l)(v; to - s) (2.6) 
21Tt -"" 

withF(v) =fWv)),q,(v) = cp(Hv» and,for convenience, we 
have introduced the function 

( ) 2R(vl/2 -1) I (vl/2 - 1)2\-" 
jJ." (v;x) = vl/2(vl/2 + 1)3 X +R\vl/2 + 1 . (2.7) 

Applying the Schwarz inequality to Eq. (2. 6) gives the 
relation 

If(s) I 2 .;;..!. J"" dvIF(v)jJ.(l)(v;t o - S)12g(v), 
21T -00 

where 

J = ..!. J "" dv I q, (v) I 2 

21T -00 g(v) 

and g(v) is a positive function to be specified. 

Using the transformation Eq. (2.4), one can show 

(to+R p(t) JOU 
Jt dt - = dvp(t(v))J.L(n)(v;t o)· 

o tn 1 

Eqs. (2. 2), (2.3), and (2.10) give the inequality 

(2.8) 

(2.9) 

(2.10) 

ft:o
+

R 
dt p(t) ~ kR a/2 J 00 dV~v l/2 - l)a I F (v) 12jJ. (p+ b/2) (v' to) 

t il 1 V 1/2 + 1 ' 
(2.11) 

The reality condition fort (~) implies 

F(v*) =F*(v-1), (2.12) 

which can be used to rewrite the right-hand side of Eq. 
(2.11) as an integral over positive values of v: 

(to+R p(t) 
Jt dt-

o tn 

~ kRa/2 Joo dvl(v1/2 -1)" jJ.(p+b/2)(v;t o)IIF(v)12. 
2 0 v1/2+1 (2.13) 

If we let 

g(v) = I V l/2 - 11" I jJ. (P+ b/2) (v; to) I 
v1/2 + 1 I jJ. (l)(v; to - s)12 

(2. 14) 

and break the integral in Eq. (2. 8) up into an integral 
from v = - "" to 0 and one from v = 0 to + "" we obtain, 
with the aid of Eq. (2. 13), the expression 

(2.15) 
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FIG. 3. Complex z plane. 

where we have mapped the integral from v = - 00 to 0 
back onto the ~ plane. 

We now evaluate the least-upper-bound of J over the set 
of all admissible functions q,(v). From Eqs. (2. 9) and 
(2.14) we have 

1 Joo I v 1/ 2 + 11 a I jJ.(l)(v;t o - s)q,(v)12 
J =- dv ---

21T _00 V1 / 2 - 1 I jJ.(p+b!2)(v;t O) I (2.16) 

We now map the half-plane Imv ~ 0 onto the unit disk 
1 z 1 .;; 1 by means of the transformation 

z = (v - e i8 )/(v - e-i8 ) (2. 17) 

This transformation has the following properties (see 
Fig. 3): 

(i) The real v axis is mapped onto the circle I z I = 1 
such that the points v = ± "",- 1,0, cos i:J, and 1 are 
mapped onto the points arg z = 0, (3, 2(3, 1T, 1T + (3 
respectively. 

(ii) The arc I v I = 1 is mapped onto the line arg z = {3 in 
such a way that v = exp (i{3) (Le., ~ = s) and v = exp 
(i{3') (Le., ~ = 0) correspond to z = 0 and z = 
[sini (j3'-{3)/sini(j3' + (3)] exp(i{3) respectively. 

(iii) For real v one has the relation 

v = sin(i - (3)/sini ; arg z = e. 
2 2 

with this transformation the integral J becomes 

s'nf3 21[ 
J = + 10 delh(e i6 )1iq,(v(e i6 »l2, 

where 

(2.18) 

(2.19) 

h(z) = 1 (V1!2(z) + 1) a [I-L(l)(v(z);t o - s»)2. 

(1 - z)2\v 1!2(Z) - 1 jJ.(p+b/2)(v(z);t o) 

With the aid of Eqs. (2.4), (2.7), and (2.17) we have 

h(z) =E(z) (Hz»n+b!2 (1-z)-1/2 (1 _ e-2i8z)-1!2 
(Hz) - s)2 

x (1 - e- i (8+n)z)l-a, (2.20a) 
'" 2iRe- i (B-n)/2 
LAz) = -::-----:c:-:-::---: [2 sin (8/ 2)]a-1 

x [e i 8/2(1 _ e- 2i8z)1/2 + (1 _ z)1/2)2a- 4 (2.20b) 

Equations (2.20) show that h(z) has Singularities on the 
unit circle at arg z = 0, 2{3, 1T + (3. We therefore define 

q, (v(z» = (1 - z)r 1(1 - e-2i8z)r 2(1 - e-i (8+n)z)r 3~(z), 
(2.21) 

where the constants Y i are to be picked so that the 
absolute value of 
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-
h(z) = (1 - z)2r1(1 - e-2i8z)2r 2(1 - e-i (8+1[)z)2r 3h(z) 

(2.22) 
is integrable on the unit circle, i.e., Y1 ? t, Y2 ? i 
Y3 ? {a - 1)/2. (Zeros of h on the unit circle are not 
particularly troublesome for one can consider the in­
tegralJ to be a limit as Izl--71-.) 

We are now in a position to apply the Szego theorems to 
bound J from above: 

J "" J M =' 2 su$ exp - de logl h (e,e)i . . (1 f 21[ -.) 

21T 0 
(2.23) 

Substituting Eq. (2. 23) with the value for JM obtained in 
the Appendix into Eq. (2.15) gives 

If(s)12 "" _1_IR + to - S)(to _ s)n~1+(/>-a)/2 
41Tk\.R -to + s 

{1 + [(R - to + s)/(R - to)] [t01l2/(lo - s)1I2]}2n+b 
X -------~--------~~~----~----~---

[1 +to (2R -2to + s)/(R _to)2]n+b/2 

(
rto+R pet) kR1+a/2 J21[ If(lo + Rei<l')1 2) 

x Jt dt - + - drp • 
o tn 2 0 Ito +Re i <l'ln+b/2 

(2.24) 

At s = 0, Eq. (2.24) reduces to 

If(0)12 "" -- (4t )n-1+(b-a)/ __ 0 
2a <i - t )n-1+ b/2 

1Tk 0 +to 

(
rto+R p{t) kR1+o/2 J21T IJ{to +Rei<l')12) 

x Jt dt - + - drp • 
to tn 2 0 Ito +Re i<l'ln+b/2 

(2.25) 

It is worth noting that the inequalities Eqs. (2. 24) and 
(2.25) are the sharpest ones that can be derived given 
only Eq. (2. 2) and the analyticity off(~). LetJ n;tax (R) 
be the maximum of If(~) I on the circle 1 ~ - to I = R. 
From Eq. (2. 25), we derive 

(2.26) 

where 

Equation (2.26) gives a lower bound for Ifmax (R) I 
throughout the cut plane in terms of If(O) I 2 and If(t) I 2 
for to"" t "" to + R. In other words, Eq. (2.26) gives the 
constraints on the behavior of f(~) (e.g., an amplitude, a 
form factor) in the whole cut-plane in terms of the low 
energy behavior of J(t). 

3. INEQUALITIES FOR THE DERIVATIVE OF THE 
FUNCTION 

To find an inequality involving the derivative of fU), we 
first differentiate both sides of Eq. (2. 1) with respect 
to s, 

df(s) _ yf(s) = _1 1 d~ f(OifJ(~), 
ds 21Ti c (~_ S)2 

(3.1a) 

where 
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y =' dcf>(s) . 
ds 

(3.1b) 

By repeating the same procedure as before, one obtains 

kR1+i¥2 J21T If(to + Rei<l') I 2) + - drp , 
2 0 Ito +Re i <l'ln+b/2 

(3.2) 

where J' is given by Eq. (2.9) with g(v) replaced by g'(v) 
where 

1/2 1 a 1,,(n+b/2)(v·t )1 
g'(v) = I V - I"" '0. (3.3) 

v 1/2 + 1 1!1-(2)(v;to - s)12 

Besides the condition ~(v(z = 0» = 1, the function 
~(v(z» must now satisfy the constraint 

(d~(V(Z») R - to + s . = - 4(t o - s) e'i'ly. 
dz z~o R + to - s 

(3.4) 

Because of this new constraint, we cannot directly apply 
Szego's theorem. We can nevertheless find an upper 
bound J' M for J' by using a slightly different method. 3 

We define a new function 'lr(z) by the relation 

R -t + s 
~(v(z» = [1 - 4 (to - s) 0 eitlyz]'lr(z). (3.5) 

R + to - s 

Now w is an analytiC function arbitrary to the' extent that 

w(z = 0) = 1, d'lr(z =0) =0. 
dz 

The expression for J' becomes 

;~Il 211 
J' = _s .... _'I-' J de IH(e ie )II>Jt(e iS )12, 

1T 0 

where 

(3.6) 

(3.7) 

h(z) R-to+s 
H(z) = 11 - 4(to - s) ye-ii'lz 12 

(Hz)-s)2 R +to-s 
(3.8) 

with h(z) given by Eqs. (2.20). Since IH(z)1 is a positive 
definite, summable function on the unit Circle, one can 
apply the generalized Szego theorem 6 to obtain 

J' "" J'M = 2 sin{3 (11J(z)12 + I d1J(z) I 2\ (3.9) 
dz J" =0 

where 

1J(z) = exp 1.1.. t" de e.
i

s
e 

+ z logH (e lS») . 
\41T 0 e' - z 

(3.10) 

- -
Here H(z) is given by Eq. (3. 8) with h(z) replaced by h{z) 
[see Eq. (2. 22)]. 

By using the same method employed in the Appendix and 
the elementary formula 

J
21T 

de log(1 + a sine + b cose) o 

1 +.J1 - a 2 - b2 
= 21T log , 

2 
we find 

(a 2 + b 2 < 1), 

I df{s) + yJ(s) 12 "" _1_(R + to - S)3 (t 0 _ s)n-3+ (/>-a)/2 
ds 641Tk\R -to + s 
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X 1 + 1 1 - 2 + 8 _A __ (2n + b)_A_1 
{ [

c C ' 
C 1 + C 2 A-I A' - 1 

+1(2a-4)C 3r 
(

rto+R p(t) kR1+al2 J2'IT l!(to _Re i 'l')12) 
X Jj dt - + - drp , 

to tn 2 0 Ito +Re i 'l'ln+bI2 

(3. 11 a) 
where 

4R2 
iI.= , 

R-to+s 
C1 = 11 + 4(to - s) y I 

(jl -to + 5)2 R +to - 5 

4R 2 
A' = ----'=-=---

{jl -to + S)2 

R - to + s 
C 2 = 11 - 4 (to - s) y I 

R + to - s 
(~.l1b) 

and for convenience we have written c 3 in the integral 
form 

C = ~ J2'IT e-i6de logl ei8/2 (1 _ e-2i8z)1/2 + (1 - z)1/21 
3 2lT 0 

($.l1c) 

In Eqs. (3.11), y is a free parameter. Bounds on the 
derivative of the function which do not involve the value 
of the function itself may be obtained by setting y = O. 
In applications it may be useful to give some other value 
to y; the inequality (3.11a) is valid for all values of y. For 
s = 0 and y = 0, Eq. (3.11) becomes 

1_"_ I ~ - (4t 0)n-3+ (b-a)/2 ___ 0 dl'(O) 2 2a (R - t ) n-3+ bl2 

ds lTk R +to 

X[l +(1 (8-2n-b)4R
2

1 
+ 1(2a-4)C31)2] 

(jl + t 0)(3R - to) 

[
rto+R p(t) kR1+al2J2'IT If(t o + Rei 'l')12] 

X Jj dt - + - drp . 
to tn 2 0 Ito +Re i 'l'ln+bI2 

(3.12) 

One need not stop here. Dispersive inequalities for high­
er derivatives can also be constructed by using the 
methods reported in this article. 
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APPENDIX 
In this appendix we evaluate the integral 

(
I 2 'IT - ) J M = 2 sin{l exp - J de loglh(e i6 )1 , 

2lT 0 

with h(z) given by Eqs. (2. 20) and (2.22). We first 
write 

J M = (2 sin{l) exp[ 1(1) + (n + b12) J(2) - 2I (3»), 

where 
1 }2'IT , 

1(1) = -2 de log IL (e i6 ) I, 
IT 0 
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(AI) 

(A2) 

J(3) =~t'ITde 10gl~(ei6)-sl, 
2lT 0 

and we have used 

J211 I . 
de log e i6 - e, 6ol = 0, o 
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(A3) 

(A4) 

The integrals I (i) are most simply evaluated by means of 
Jensen's well-known formula: 

10g.Jn- = ~ t'IT de loglf(e i6 ) I, 
D1zi 1 2lT 0 

(A5) 

i= 1 

where f(z) is an analytic function for 1 z 1 ~ 1 having 
zeros at z l' ... ,zn in the interior 0 "" 1 z 1 < 1 (multiple 
zeros being repeated) and the behavior f(z) -) ~Zr(T ~ 0) 
as z -) O. Referring to Eq. (2. 20b), we see 2:)(z) is non­
vanishing for 1 z 1 < 1, hence 

1(1) = log 1 ~(O) 1 = log (2 sina-103~) cos3-a03 /4»)' 

(A6) 

By construction, Hz) has a simple zero atz = [sint ({3' -(3)/ 
sint 03' + f3)] exp(if3} and ~ (z) - s has a simple zero at 
z = O. Obviously ~ (0) = s and using Eqs. (2.4), (2, 5a), 
and (2.17), one can show 

[(Hz) - s)/zL=o = - 4(to - s) cos(,8/2)e-i 8 , 

therefore, 

( 
sin~ (,8' + (3») 

I (2) = log s . 1 , ' 

sm203 - f3} 

1(3) = log[4(t o - s) cos03/2)]. 

Substituting Eq. (A6), (A8), and (A9) into (A2) gives 

R tan2- a 03/4) ( sin~ 03' + (3»)n+b/ 2 
J === -,--- S --;-:--:--~ 

M 4(to - s)2 cos({3/2) sin~ 03' - (3) 

or, with the definitions Eqs. (2. 5), 
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Complex coordinate transformations and the 
Schwarzschild-Kerr metrics* 

E. T. Newman 

Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 
(Received 24 October 1972) 

Utilizing the fact that the Schwarzschild and Kerr geometries have an intrinsically defined 
Minkowski space associated with them, we show that these Minkowski spaces (as the Kerr 
parameter varies) can be viewed as "real slices" in a complexified Minkowski space. The complex 
Weyl tensor of each member of the family can then be viewed as a single complex field on the 
complex Minkowski space. Further, the degenerate principle null vectors associated with each 
geometry can be considered as projections into the "real slices" of a complex null vector field in the 
complex Minkowski space. These results may be considered as clarifying earlier work on obtaining 
the Kerr metric from the Sch warzschild metric by a complex coordinate transformation. 

1. INTRODUCTION 

Several years ago we published two papers1 ,2 in which 
the Kerr 3 and the charged Kerr metrics were "derived" 
from the Schwarzschild and charged Schwarzschild 
(Reissner-Nordstrom) metrics by a complex coordin­
ate transformation. "Derivation" was originally put in 
quotation marks because there was no simple, clear rea­
son for the series of operations performed on the 
Schwarzschild metric to yield a new solution of the Ein­
stein equations. Until recently, aside from the essen­
tially trivial remark that the field equations sanction 
these operations, 4,5 there has been little progress in 
giving a geometriC interpretation to the complex trans­
formations. Adler et al. 6 have just shown that the Kerr 
and Schwarzschild metrics can be obtained from a com­
mon generating function by just a complex displacement 
of the origin. The present author has recently shown7 

that the Maxwell equations and the linearized Einstein 
equations (for the Weyl tensor) may be complexified and 
considered as field equations in complex Minkowski 
space. From this point of view the Weyl tensor of the 
linearized Kerr (charged Kerr) and linearized Schwarz­
schild (charged Schwarz schild) may be looked upon as 
the same field but viewed in different "real slices" of 
complex Minkowski space. (Each value of the Kerr 
parameter a yields a different slice; a = 0 yields the 
SChwarz schild Slice.) 

It is the purpose of the present paper to show that these 
results for the linearized Schwarz schild-Kerr metrics 
can be extended to their exact form. 

Of fundamental importance in the analYSis is the fact 
that for each member of the Kerr family there is a 
covariantly defined flat- space defined from 

(1. I} 

where A is a scalar function and It is a (degenerate) 
principle null vector. What we wish to show is that 
these flat-spaces may be considered as a family of flat­
spaces all imbedded in complex Minkowski space. The 
Weyl tensor ~ or more preci~ely the "complex" self-dual 
Weyl tensor "2(C aB ro + icaBfo}] will then be considered 
as a function on the complex Minkowski space. On any 
of the real slices the real Weyl tensor can be recon­
structed. Furthermore, the principle null vectors of 
the complex Weyl tensor are degenerate in the sense of 
being arbitrary in a null complex two-plane and in gene­
ral complex (they are not degenerate in this sense for 
the real Weyl tensor). The degeneracy, however, can be 
removed on each real slice by demanding a real (tangent 
to the slice) principle null vector. This yields the vec­
tor It of (1. 1). Finally, the scalar function A can be 
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written as the real part of a function on the complex 
Minkowski space. 

In Sec. 2 we discuss some properties of complex Minkow­
ski space and define" real slices". After complex null 
polar coordinates are introduced (the real coordinate 
values yield a real slice) a basic complex coordinate 
transformation (similar to that of Ref. I) is presented. 
The real new coordinate values yield a Kerr-type of 
coordinate system on a new slice. In Sec. 3 complex 
tetrad transformations and their relation to the prin­
ciple (complex) null vectors of the complex Weyl tensor 
are described. It is shown that the complex Weyl ten-
sor of each member of the Kerr-Schwarzschild family 
can be viewed as a single complex function in complex 
Minkowski space. 

We wish to point out that we make no use here of the 
Einstein equations to find the relation between the dif­
ferent members of the Kerr-Schwarzschild family. We 
simply take the known metrics and show that a certain 
unity exists between them when viewed in complex 
Minkowski space. 

2. COMPLEX MINKOWSKI SPACE 

We consider the complexification of Minkowski space 
by taking a four-dimensional complex manifoldS (eight 
real dimensions) covered by a Single complex chart, the 
coordinates labeled by Zll = xII + iyll (xII and y II real) en­
dowed with a complex metric 

ds 2 = TJ llu dz IIdz 11 • (2.1) 

The only transformations considered are holomorphic 
transformations of the coordinates. The group which 
preserves the form of the line element is the ten (com­
plex) parameter Poincare group9 

z'"=a~zu+bll, (2.2) 

bll being a constant complex vector and a~ being a con­
stant complex matrix satisfying 

(2.3) 

By a "real slice" of this space we mean a four (real) 
dimensional subspace such that the metric induced on it 
by (2.1) is real. 

It obviously follows from (2.2) that there exists, at 
least, a ten (real) parameter family of these slices aris­
ing from the imaginary POincare transformations, four 
from the imaginary translations and six from the imagin­
ary homogeneous transformations. (It is unknown to us 
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whether other" real slices" exist. Presumably if they 
did, the induced metrics would not be flat.) Although in 
the remainder of this paper we will confine ourselves 
to the "real slices" obtained by the imaginary transla­
tions (parallel slices), we would like to conjecture that 
new solutions of the Einstein equations can be obtained 
by applying the ideas of this paper to the complex 
boosts. The solution, presumably, would be similar to 
the solution of Maxwell's equations obtained from the 
Coulomb solution by a complex boost. 7 

We now wish to consider a generic parallel slice which 
can be conSidered, with no loss of generality, to arise 
from a translation of real Minkowski space in the 
imaginary z 3 direction, Le., it is defined by 

Zll = x'il - iao~, x'il real. 

We digress for a moment to introduce complex null 
polar coordinates by 

(2.4) 

Zll = (1/.J2)(2u +r,r cose,r sinecoscp,r sinesincp) 
(2.5) 

with u,r, e and cp complex. The line-element (2.1) be­
comes 

r2 
ds 2 = 2du2 + 2dudr - 2 (de 2 + sin2edcp2). (2.6) 

Note that real values of u, r, e, cp defines the same real 
slice as Zll = xll ,xll real. 

If we now perform the complex transformation 

u = u' + ia cose', r = y' - 2ia cose', 

c ose = Y_' ...::c...::o,-=s-=-e_' _----=2:..:.ia"-­
r' - 2ia cose' , 

r'2 4a 2 
cos2(cp - cp') = - , 

r'2 + 4a 2 

(2.6) becomes 
(2.7) 

ds 2 = 2du'2 + 2du'dr' - 2a sin2lJ'dr'dcp' 

- ~ (r'2 + 4a 2 cos2lJ') (de'2 + sin2e'dcp '2) 

- 2a2 sin4 lJ'dcp'2. (2.8) 

If u', r', e' and cp' are restricted to real values, it can be 
shown that this is equivalent to choosing the real slice 
(2.4). Equation (2.8) is then the real Minkowski metric 
in Kerr-type coordinates. 1,2 One could consider that 
the transformation (2.7), taking (2.6) into (2.8), offers a 
partial explanation of the algorithm of Refs. 1 and 2 lead­
ing from the Schwarzschild to the Kerr metric. 

[We wish to point out that knowing (2.8) and (2.6) it 
would be possible to derive (2.7) by solving a set of par­
tial differential equations. We however found it far 
easier to use the Penrose theory of twistors10,1l where 
a series of relatively simple algebraic steps yielded 
(2.7). It is however unnecessary for the purposes of 
this paper to enter into this question.] 

3. THE COMPLEX WEYL TENSOR 

Associated with the complex null polar coordinate sys­
tem of (2.6) is a null tetrad system 

1 i 
nil = 01)- 0i' mil = r (01 + sine o~), 

- 1 i) m P = - (o~ - -- o~, 
r sine 

(3.1) 

where (0,1,2,3) refers to (u,r, e, cp). Only on the real 
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Slice, Zll = x ll , should these be viewed as a "normal" 
null tetrad system with land n real and m and In com­
plex conjugates of each other. 

A second complex null tetrad system introduced by 

l* = 1 - Qm, n* = n + Qm, m* = Sm, 

m* = S-l(m + Ql - Qn - Q2m), (3.2) 

with Q = 2ia sine'/r'2 + 4a 2)1/2 and S = 
(r' - 2ia cose')/(r'2 + 4a 2)1/2, has the form [When ex­
pressed in the coordinate system of (2.8)] 

l* = ai, n*1l = 0b - Of, 

m*1l 1 ria sine'(ab - 2Of) 
(r' + 2ia cose') 

+ ~ + __ i_ Oil] (3.3) 
sine' 3 ' 

1 [-iasine'(ob- 2oi) 
(r' - 2ia cose') . 

+ 01- ~l - Oil]. 
sine' 3 

On the real slice (2.4) this is a "normal" null tetrad 
system,1,2 l* and n* real,m* and m* complex conju­
gates of each other, with l* shear-free and having com­
plex divergence p == l:;v m*llm *v = - 1/(r' - 2ia coslJ'). 

Starting with a tensor CaB 0 whose algebraic symmet­
ries are those of the Weyf tensor we consider its com­
plexification 

(3.4) 

with * denoting the dual. WaByo is now to be considered a 
field on the complex Minkowski space. Its only indepen­
dent nonvanishing tetrad components are 

'flo = - WaByol<>mBlYm I". 

1/-'1 = - WaByolanBlYmo, 

1/-'2 = - WatlyomantllYmo, 

1/-'3 = - Wa8yoman8lYno, 

1/-'4 = - WaByom an 8myn o. 

(Note that WaByolYmo = WaByomYno = 0.) 

(3.5) 

If we give the particular field, expressed in the complex 
null polar coordinates with the tetrad (3.1) as 

1/-'2 = - 2.J2m/r3, (3.5') 

it is easily seen that on the "real slice" Zll = x ll, it re­
presents the Schwarzschild Weyl tensor with III a de­
generate principle null vector. [l is a null vector of both 
Schwarzschild space and its associated Minkowski 
space. The same is not true for n. See (1.1).] 

The same field but now expressed in the coordinates of 
(2.8), USing the tetrad (3.3), has the form 

t{;1 = 0, Ifli = 0, 1/-'* - - 2.J2m 
2 - (r' - 2ia coslJ') 3 ' 

- 6-12 S-lQm 12.J2 ima sine' 1/-'* = _--=-~=--..::>c:..:-=--
3 (r' - 2ia cose')3 (r' - 2ia coslJ')4 ' 

- 12.J2 S-2Q2m 48.[2 ma 2 sin2e' 1/-'4 = -=..:....::..-=-~--=-:..:-
(r' - 2ia cose')3 (r' - 2ia cose')5 
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This can be shown to be [on the real slice (2.4)] equiva­
lent to the Kerr Weyl tensor. 

Finally we mention that the ~ of (1.1) can be chosen as 
the real part of the scalar function 4../2 m/r on com­
plex Minkowski space, thus 

DISCUSSION 

We have shown that there exists a certain unity in the 
Kerr-Schwarzschild class of metrics (possibly includ­
ing the conjectured new metrics arising from the 
imaginary boosts) when viewed from complex Minkow­
ski space. We have little idea whether other new 
metrics can be obtained by similar techniques though it 
appears conceivable that similar unities between other 
members of the Kerr-Schwarzschild class [Eq. (1.1)] 
could exist. 

There does however appear to be some evidence that 
the work described here is part of a larger structure. 

J. Math. Phys., Vol. 14, No.6, June 1973 

Recent workll ,12 on asymptotically flat spaces indi­
cates that null infinity possesses a natural complex 
structure and that the invariance group (suitably de­
fined) is the complex Poincare group. In fact, transfor­
mations Similar to Eq. (2. 7) in the limit r ~ co arise 
naturally. 
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We follow the investigation initiated in an earlier paper. Here we treat the case of Galilei group g. 
The complete description of all closed subgroups H of 9 is given. Then among them we describe 
those such that the corresponding homogeneous spaces S / H bear a bounded invariant measure. 

INTRODUCTION 

Many studies of ergodic (Le., extremal invariant) states 
of a C*-algebra acted upon in an asymptotically abelian 
way by a group G have revealed that a wide class of 
ergodic states are obtained as integrals of states with 
lesser symmetry, Le., invariant only under a subgroup 
of G. 

The case of crystal states led to seek for a principle 
yielding decompositions of ergodic states into states 
which retain the symmetry of normal as well as non­
normal subgroups running through a conjugacy class of 
subgroups of G. This principle was shown in Ref. 1 to be 
the central decomposition of ergodic states in the sense 
of Saka'i.2 In the case of transitive states, the descrip­
tion of such components "with broken symmetry" 
amounts to the classification of all homogeneous spaces 
of G which carry a bounded invariant measure. 

In Ref. 1, this work was done for the Euclidean group, 
giving rise to the cristallographic groups in 1,2, and 3 
dimensions, and some "helicoYdal" groups. Our purpose 
is to give an equivalent classification for the Galilei 
group g, up to a conjugation in g. 
Section 1 gives a strategical description of the method; 
Sec.2 recalls some essential properties of g; Secs. 3 and 
4 contain a complete description of closed subgroups of 
g; Sec. 5 retains among them those which are an answer 
to our problem. 

1. PRELIMINARIES 

This is also true when G is the extension of a compact 
Lie group by a solvable group (Mostow, private com­
munication). As this is the case for the Galilei group, 
our work verifies that it satisfies this extension of 
Mostow's theorem. 

2. THE GAll LEI GROUP 

Let us recall that the Galilei group 9 is a ten-para­
meter real Lie group, the elements of which will be 
written 

(x, v, t, r), 

where 

V E R~, 

t ER t, 

r E 80(3), 

translations in three-dimensional 
Euclidean space, 

pure Galilei transformations, 

time translations, 

three-dimensional connected real 
orthogonal group4, 

the group law being: 

(x', v', t', r')(x, v, t, r) 

= (r'x + x' + tv',r'v + v', t' + t,r'r), 

(0,0,0,1) = til' 
(x,v,t,rt l = (-r-l(x - tv),-r-lv,- t,r- l ). 

(1) 

(2) 

(3) 

We refer to Ref. 1 for a listing of some mathematical 
results concerning quotients, and recall the strategical 
remarks upon which our method rests. 

There exist several decompositions of 9 as a topologi­
cal semidirect product. We shall retain the following 
one, which we will use in the sequel. 

Let H be a solution of our problem for g, Le.,H is a 
closed subgroup of 9 such that the homogeneous space 
9 IH carries a bounded 9 -invariant measure. Then: 

(1) All closed subgroups H' of 9 such that He H' C 9 
are solutions of the same problem; 

(2) All subgroups H" C H solutions of the problem for 
H are solutions of the problem for g; 
(3) Conversely if K is not a solution of the problem for 
H, it is not a solution of the problem for g. 
Moreover, Mostow has shown3 : 

Theorem: If G is a solvable Lie group, then, for any 
closed subgroup A of G such that GIA carries an invari­
ant measure m A, the finiteness of mA is equivalent to the 
compactness of GIA. 
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Let K be the subgroup of 9 of elements of the form 

(x, v, t, 1). (4) 

Because of 

(x', v', t', r')-l(x, v, t, 1)(x', v', t', r') 

= (r'-l(x + t'v - tv'),r'-lv,t, 1) (5) 

one sees that K is invariant and we can define the quo­
tient group 

9lK ~ 80(3). (6) 

The application 

r:(x, v, t, 1) ~ r(x, v, t, 1) = (rx,rv, t, 1), (7) 

Copyright © 1973 by the American Institute of Physics 717 
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where rx and rv are the transformations of x and v 
under the orthogonal transformation r E SO(3), defines a 
continuous homomorphism from SO(3) into autK and we 
can write S as the topological semidirect product of K 
and SO(3), which we denote 

S = KO SO(3). (8) 

Let us now call R~ EEl R; the subgroup of K of elements 
of the form 

(x, v, 0,1). (9) 

Because of 

(x', Vi, t', 1)-l(x, v, 0, 1)(x ' , Vi, t', 1) = (x + t'v, v, 0,1) 
(10) 

one sees that R ~ EEl R ~ is invariant in K and we can de­
fine the quotient group 

(11) 

The application 

t:(x, v, 0,1) -0 t(x, v, 0,1) = (x + tv, 0,1), (12) 

where tv is the multiplication of v E R~ by the scalar 
t E R defines a continuous homomorphism from Rt into 
aut(Rtj EEl R3), and we can write K as the topological 
semi~lirect product of RJ EEl R~ and R t , which we denote 

Finally, we get for S the decomposition 

S = (R~ EEl R~) 0 R t 0 SO(3) 

with the law 

[{(x', Vi), t'}, r'][{(x, v), t}, r] 

= [{x',v'),t'}'r'{(x,v),t},r'r] 

= [{(x', Vi), t'}{(r'x, r'v), t}, r'r] 

= [{t(x', v')(r'x, r'v), t ' + t}, r'r] 
= [{(x' + tv',v')(r'x,r'v),t' + t},r'r] 

= [{(r'x + x' + tv',r'v + v'),t ' + t},r'r]. 

(13) 

(14) 

(15) 

It must be noticed that the composition law in (13) is 
written in an unusual (t acting on the left) but, neverthe­
less, coherent way, thanks to the Abelian character of 
R t • 

Finally, (7) and (12) being continuous automorphisms of 
R3 EEl R3 and f1 s denoting the modular function of S, one x v' 
sees that 

NK(F) 

"1' 
')0 1 

1 
KH ~~ ~ 1 

1 1 
1 1 

Fig. 1 
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f1 ::::: f1 • detr' f1 == f1 • f1 • det t . f1 • det r . f1 
S K SO(3) R; R; R t SO(3) 

:::::1 

and that S is unimodular. Hence, the subgroups H giving 
rise to an invariant measure over S /H have to be uni­
modular. 5 

3. THE CLOSED SUBGROUPS OF K 

This section will be devoted to the search for the closed 
subgroups ofK. LetKH be such a closed subgroup (the 
choice of this notation will become clear in the next 
section) and let us define 

(16) 

It is a closed invariant Abelian subgroup of K H' which 
allows us to introduce the quotient group 

(17) 

If NK(F) denotes the normalizer of F in K, it contains 
KH as a closed subgroup, F and R~ EEl R~ as closed in­
variant Abelian subgroups, and we get the two quotient 
groups 

MF ::::: NK(F)/(R; EEl R~) 

NF = NK(F)/F. 

Thanks to the explicit definition of NK(F), 

(18) 

(19) 

NK(F) = {(x, v, t, 1) E K:(x, v, t, It 1(x', v', 0, l)(x, v, t, 1) 

= (x' + tv ' , v', 0, 1) 

=t(x',v',o, 1) E F,(x',v',O, 1) EF}, (20) 

it is evident that M F is the subgroup of R t under the 
action of which F is left stable. Moreover, NK(F) can be 
written as the semidirect product of MF and R~ EEl R~ 
with the law induced by the one of K: 

On the other hand, the continuous homomorphisms 

having the same kernel, there exists a continuous in­
jective homomorphism A 

A(FH) = [KH'(R~ EEl R~)J/(R~ EEl R~) 

such that the diagram in Fig. 1 is commutative. 
(23) 

It is important to notice that, A having no closed range in 
general, A(FH) is an algebraic, but not necessarily topo­
logical, subgroup of M F' 

Introducing the quotient 

TF = (R~ EEl R~)/F, (24) 

we are able to consider R; EEl R~ as an extension of F by 
TF characterized by some 2-cocycle w: 

w 
R~ EEl R~ = F 0 TF . (25) 

Any element (x, v, t, 1) E K can then be written 

(x, v, t, 1) = {[(xF , vF ), (Xx, Xv)], t, I} 

= {[o, (Xx, Xv)], t, l}{[(xF , vF ), 0], 0, 1}, (26) 
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where (xF , v F ) E F and (Xx, Xv) E TF • In particular, the 
elements of FH are of the form {[O, (X ,x )), t, I}; as 

x v 

A{[O, (X ,x )], t, I} == t (27) 
x v 

and A is injective, to any t E A(FH) there corresponds a 
unique element (Xx(t), X v(t» E TF , we can then define the 
application from A(FH) into TF according to 

<x ,x ) 
x v " (X (t), X (t» 

x v 
(28) 

and write any element of KH in the form 

(29) 

If, on the other hand, we remark that 

(30) 

where the action of MF into TF is deduced from the 
action of MF onto R~ Ell R~ through the quotient (24), we 
then discover that FH is a subgroup of NF with the law 

{[o,h (t'), X (t'»], t', l}{[O,(x (t), X (t»], t, I} 
x v x v 

== {[O,(X (t') + X (t) + tx (t'), X (t') + X (t))], t' + t, I} 
x x v v v 

== {[O,h (t + t'), X (t + t'»], t' + t, I}, (31) 
x v . 

and, moreover, that the following relations are true in 
TF : 

X (t' + I) == X (t) + X (t') + tx (t') 
x x x v 

== X (t) + X (t') + t'x (t), 
x x v 

X (t + t') = X (t) + X (t'), 
v v v 

X (- t) = tx (t) - X (t), 
x v x (32) 

X (- t) == - X (t), 
v v 

X (0) = 0, 
x 

X (0) = O. 
v 

In these conditions 

NK(F) == (R~ Ell R~) 0 MF == (F [] TF ) 0 MF 
w' w' 

= F 0 (TF 0 M F) = F 0 N F (33) 

and in particular 

(34) 
w' 

where the law 0 is defined according to 

{(x;, v;), [(X)f'), x}f'», f', I]} 

x {(x, v ), [(X (t), X (f», t, I]) 
F F x v 

== {(x' + tv' + x ,v' + v ) 
F F F F F 

+ "->[(X (t') + tx (t') + X (f), X (f'», (X (t), X (t»], 
x v x v x v 

( X (t') + tx (t') + X (t), X (t') + X (t», t' + t, I]) 
x v x v v 

= {(x' + tv;' + x ,v' + v ) + w'(t', t) 
F F F F ' 

[(X (t' + f), X (t' + t», f' + t, I]} 
x v 

== {(x' + tv' + w'(t',/),v' + v + w'(f' t» 
F F x F F v" 

[(X)!' + t), xJf' + t)), I' + f, 1 ]}, (35) 

where we denote 
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w[(x (t') + fX (t'), X (t')), (X (t), X (t»] 
x v v x v 

== w'(t', t) = {w'(t', t), w'(t', t}} E F. (36) 
x v 

Finally,KH having to be closed into NK(F), then FH has 
to be closed into NF • 

We have the following procedure to get any closed sub­
group KH of K: A choice of F among the closed sub­
groups R~ Ell R~ determines in a unique way TF,MF , NF , 
w, and w'. The subgroups FH are then defined as closed 
sections of NF with the help of a suitable application 
(X ,x ) defined in a (nonnecessarily closed) subgroup 

x v 

of MF with values in TF • KH is then the w'-extension of 
F and FH • The situation can be described, in terms of 
exact sequences, according to the scheme in Fig. 2. 

The closed subgroups F of R~ Ell R~ are of the form 6 

{ 
0::; m + P ::; 3, 

F = (Rin Ell Z/) Ell (R~ Ell Z:n, 
0::; n + q ::; 3. 

(37) 

There are one hundred of them, up to an automorphism. 
According to the definition of M F , 

t EMF ¢:;> t(F) == {[(R;' Ell Z/) 

+ feR:; Ell Z,?)] Ell (R() Ell z,r)} C F, (38) 

where the sum (R;' Ell Z/) + I(R:: Ell Z,r) is defined 
through a (nonunique) imbedding of R(} Ell Z,r into R'i' Ell Z/. 
Then, in particular, M F == {O} if and only if n + q > m + 
p or n > m. M F being a closed subgroup of R t , that is to 
say,MF == {O},MF == Z, or MF == R, we can classify the 
subgroups F into three families F{ O} , F z, F R acc ording to 
the type of the corresponding M F' As, in the sequel, we 
will eliminate the F{O}' we give in Tables I and II the 
list of the Fz and FR, with the corresponding Tp and TF • z R 

One must notice that some groups are in both tables, 
according to the way into which R ~ Ell Z,r is imbedded into 
R;' Ell Z/. 
On the other hand, we know that 

o 
o 

o 
o 

o 0 

Fig.2 
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then '\(FH) = 0, if MF = {O}, 
ifMF=Z, 

ifMF=R, 

then '\(FH) = {O} or Z, (39) 

then '\(FH) = {O}, Z, R 
or a dense subgroup of R. 

TABLE I. 

TABLE II. 

R3 
T.§ Ell R3 
rf$R} 
Tx\l) R~ 
Rx$ Rv 
RxEll(R.EIlTJ 
RxEll (R.EIl T;) 
Ol\;$R~ 
OxEll(R~EIlTJ 
T; EaRl) 
1',,2 Ell (R~ Ell TJ 
Tx$ R~ 

TxEll(R~EIlTJ 
0xe Rv 
O,EIl (R.G> TJ 
0,$ (R.G> T;) 
Txffi Rv 
T,G> (R.G>TJ 
TxG> (R.EIl T;) 
0xEEl 0v 
0xEEl T; 
0xffl Tv2 

0x$ Tv 

We are now going to explicit the form of the application 
(X ,X ) and show that the case where .\(FH ) would be a 

x v 
nonclosed subgroup of R is not relevant for our problem. 

From (32) we get immediately that 

X (t) = t X (t )/f , 
v v 0 0 

where t is any element of .\(F ) different from zero, o H 

X (nt) == nX (t) + i n(n - 1) t X (t), n E Z, t E R, 
x x v 

X «p/q)f) == (p/q)X (t) + [P(P - q)/2q2]t X (f), (40) 
x x v 

P,q E Z, t E R. 

These formulas completely fix the form of X and X when 
x v 

.\(F
H

) = 0 or Z, but only on the dense subgroup of ration-
nals when A(FH) == R. But as Fe, that is to say, the graph 
of (28), has to be closed into NF = TF 0 R, we have then 

R 
to extend these formulas by continuity, and we get 

X(f)=fX(l) } 
v v , fER, 

X (t) == it2 x (1) + t(X (1) - X (1)/2) 
x v v v 

(41) 
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where X (1) and X (1) are arbitrarily chosen constants in 
x v 

TF and TF respectively. Let us end with the case 
R v 

where '\(FH) would be a dense nonclosed subgroup of R. 
We will show in the sequel that the only interesting 
cases for our problem will be the case where m = 3 
whenever .\(FH) = R or a dense subgroup. 

Hence Xx == 0 and the graph of the application 

f E '\(FH) ~ X (t) = t X (t )/f E T = R3-n-q ED Tq (42) 
v v 0 0 Fv v v 

cannot be closed if .\(FH ) is not. 

Finally we see that the closed subgroups of K interesting 
for us are all of the type 

KH == Fz , 
w' 

K = F: 0 {(n2X (1)/2 + n(X (1) - X (1)/2), nX (1», n}, 
HZ" x v v 

nEZ, 
KH = FR.' 

w' 
K == F 0 {(n2 x (1)/2 + n<x (1) - X (1)/2), nX (1», n}, 

H R. v "V v 
nEZ, 

w' 
K = F 0 {(t2 x (1)/2 + f(X (1) - X (1)/2, fX (1», t}, 

H R v "V v 
fER. (43) 

4. THE CLOSED SUBGROUPS OF £ 
We are now reaching the next stage of this work, Le., the 
description of closed subgroups of g itself. The method 
will be Similar to the one used in the preceding section, 
but more complicated because the subgroup K is not 
Abelian. 

Let H be a closed subgroup of g and 

KH=KnH. (44) 

Then KH is a closed subgroup (see the beginning of Sec. 
3), invariant in H, but in general not invariant in K. Let 
us introduce the normalizer Ng(KH) of KH in g: H is a 
closed subgroup of Ng(KH) but in general K is not. This 
leads us to consider the normalizer NK(KH) of KH in K. 
We have then the following relations between closed 
subgroups: 

(45) 

and consequently, 

(46) 

But, converselY,KH being invariant in Ng(KH), is also 
invariant into Ng(KH) n K, which gives the opposite in­
clusion, and, finally, 

(47) 

Moreover, NK(KH) is closed invariant in Ng(KH): H g E 

Ng(KH), then gNK(KH)g-l C K because of the invariance 
of K into g, andgNK(KH)g-l C Ng(KH) because of the 
inclusion NK(KH) C Nfl(KH). 

We are able to introduce the quotient groups 

PH = H/KH 

and 

(48) 

(49) 
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and, by an argument analoguous to the one used in the 
preceding section, we can assert the existence of a con­
tinuous, injective (but in general with nonclosed range) 
homomorphism cp from PH into Q H • 

On the other hand, let 

(50) 

and 

(51) 

Then PH is a subgroup of NH and 

QH = N~(KH)/NK(KH) = Ng (KH)/K/NK(KH)/KH = NH/TH 
(52) 

is a quotient group. 

From the injectivity of cp, we conclude that the elements 
of PH are of the form 

{J(r) , r}, r E CP(PH),j(r) E TH, (53) 

where cp(PH ) is a (nonnecessarily closed) subgroup of Q H' 

Let us go on with the investigation of the structure of 
NK(KH). We lmow that 

NK(KH) = {(x',v',t') E K:(x', v', t')-l(X,v,t)(x', v',t') 

= (x + t'v - tv', v, t) E K H, (x, v, t) E K H}. 

Hence, using the notation of (26), we have that 

if t = 0, (xp + t'vp , v p , 0) E KH 

(54) 

which means that t' E M p , 

if v = 0, (x-tv',O,t) EKH 
(55) 

which means that tv' E (KH)x' 

Let us then write 

tv' = «tv')p ,(tv'h ). (56) 
x Px 

We now have 

{(x + t'v' - (tv') ,v), [(x (t) + t'x (t) 
p p Px P x v 

- (tV')T ,x (t)), t]} E K H, (57) 
p U 

which implies that x 

(tv') E F = Rm Ell ZP (58) Fx x x x 

and then 

v; = v' E R~ if t E X(FH) = {O}, (59a) 

v;' E R:J> Ell Z£ if t E X(FH) = Z, (59b) 

v; ER:J> if t E X(FH) = R or dense. 

x (t) + t' X (t) - (tv') = X (t) in T , 
x v TFx x Fx 

(59c) 

(60) 

or else t(v' - X (t')) = 0 in T , 
Tpv v Px 

and then 

if t E >"(FH) = {O}, (6la) 

v' = X (t') E R3-m-p Ell TP 
TF v v v v 

iftE>..(F)=Z, t'EM (61b) 
H p' 

J. Math. Phys .• Vol. 14. No.6. June 1973 

v' = (t') E R3-m 
T Xv 
Pv 

if t E X(F) = R or dense, t' EM. (61c) 
H p 

In other words, if FMp = (R;' Ell Zf) Ell (R~ Ell Z~), then 

NK(KH) = (R~ Ell R~) 0 Mp if >"(FH) = {O}, 
w' 

N (K) = [R3 Ell (Rm EB ZP)) 0 {x (t'), t'} KH x v V· U 

if >"(FH) = Z, t' E M p , (62) 

N (K ) = (R3 Ell R m) 0 {x (t'), t'} 
K H x v v 

if X(F ) = R or dense, t' EM. 
H p 

Moreover, the fact that the x-component of NK(KH) is the 
whole of R~ shows that NK(KH) is invariant in K. In the 
same way, we will determine the structure of Ns(KH ). 

We lmow that 

NS(KH ) 

= f,(x' v' t' r') E n ·(x' v' t' r')-l(x v t l)(x' v' t' r') l~ , " u·", , , , '" 
= (r'-l(x + t'v - tv'), r'-lv, t, 1) E KH, (x, v, t, 1) E KH}. 

(63) 
Hence, with the same notations, 

if t = 0, (r'-l(xp + t'vp), r'-lvp , 0,1) E KH , (64) 

which means that r' has to leave Fv stable; 

if t = 0 and v = 0, (r'-lxp , 0, 0, 1) E KH, (65) 

which means that r' has to leave Fx stable. So, if t = 0, 
we have 

(66) 

which means that t' E M p , and we conclude that, through 
the quotient, r' leaves TF and TF separately stable. 

x v 

if v = 0, (r'-l(x - tv'), 0, t, 1) E KH , (67) 

which means, according to the preceding remark, that 
tv' E KH . 

x 

In other words, if we compare with the structure of 
NK(KH)' we have 

with 

(68) 

r'-lX (t) = X (t) and r'-lX (t) = X (t), t E X(F), (69) 
x x v v H 

i.e., where Q H is the closed subgroup of SO(3) such that 

Q H leaves Fx = R;' EB Zc. stable, 

QH leaves 

Q H leaves 

Moreover, 

Fv = R~ Ell Z~ stable, 

X (t) and X (t )/t fixed. 
x v 0 0 

We can also determine the form of TH : 

if Mp = {O}, >"(FH) = {O}, 
TH = (R~-m-p Ell T/) Ell (R~-n-q Ell T"q), 

(70) 

(71) 
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if MF == Z, ;\.(FH) == {O}, 
TH == [(R~-m-p EEl Tf) EEl (R~-n-q EEl T,m 0 Z, 

if MF == Z, ;\.(FH ) == z, 
(72) 

TH == [(R~-m-p EEl TxP) EEl «R~ EEl Ze)/(R~ EEl Z,1)], 

if MF == R, ;\'(FH) == {O}, 
TH == [(R~-m-p EEl T/) EEl (R~-n-q EEl T,m 0 R, 

if MF == R, ;\.(FH) == Z, 

TH == [(R3-m-p EEl TP) EEl «R:;" EEl Z!)/(R~ EEl ZZ»] 0 T, 

if MF == R, ;\.(FH) == R, 

TH == [(R~-m-p EEl T/) EEl (R~-n-q EEl TJ')]. 

Then formula (53) gives 

(73) 

and 

f(r'r) == {Jx(r'r),f,,(r'r),ft (r'r)} == f(r')'r'f(r) 
== {Jx(r') + r'f)r) + ft(r)f,,(r'),!v(r') + r'f,,(r), 

ft(r') + ft(r)}. (74) 

If 0. is now the 2-cocycle defining the extension 
o 

NK(KH) = KH 0 TH , 

then 

(75) 

o 0' 0' 
Ng(KH) == (KH 0 TH) 0 QH==KH 0 (TH 0 QH) = KH 0 NH 

(76) 
and in particular 

(77) 

0' 
where the law 0 is defined according to 

[(x', v', t'), (f(r'), r')][(x, v, t), (f(r), r)] 

== [(x', Vi, t')(r'x, r'v, t)o.(f(r'), r'j(r», (f(r ' )' r'f(r), r'r)] 

== [(x', Vi, t')(r'x, r'v, t)o.'(r', r), (f(r'), r'r)], (78) 

where we denote 

o.'(r'r) == o.(f(r'), r'f(r» 

= {OF (r',r),o.;'(r',r),o.;(r',r)} E K Ho (79) 
x v 

Hence, more precisely, 

{[(X' , Vi), (x (t'), X (t'), t')], (f(r'), r')}{[(x ,v), (X (f), X (t), f)], (f(r), r)} 
FF x v FF x ~ 

== {[(x' + r'x + tv ' + w'(t ' f) + 0. ' (r' r) Vi + r'v + W'(t' f) + 0. ' (r' r» 
F F F x' Fx" F F v' Fv" 

(X (fl + f), X (fl + f), t' + t)o.'(r', r)], «f (r'r),f (r', r),f (r'r)), r'r) I (80) 
x v t x v t 

or else, if we put ;\.(o.;(r',r» == r(r',r), (81) 

{[(X' , Vi), (X (t'), X (t'), t')], (f(r'), r')}{[(x ,v), (X (f), X (t), t)], (f(r), r)} 
FF x v FF x v 

== {[(x' + r'x + tv ' + W'(t' t) + 0. ' (r' r) Vi + r'v + w'(f' f) + 0. ' (r' r» 
F F F x' Fx " F F v' F,," 

-1 

Fig. 3 

(X (t' + t + r(r', r}), X (t' + t + r(r', r»), t ' + t + r(r ' , r»], «(f (r'r),! (r'r),f (r'r), r'r)}. (82) 
x v x 1) t 

Finally,H having to be closed into Ng(KH), PH has to be 
closed into NH • 

The whole of this procedure can be described, in terms 
of exact sequences, in Fig. 3. 

Our last task is to define the structure of the application 
r ~ fer). 

We have first 

ft(r'r) == ft(r ' ) + ft(r). (83) 

Secondly, we have 

f,,(r'r) == fv(r ' ) + r'fv(r ' ) (84) 

Le.,!" is a 1-cocycle onto a subgroup Go of SO(3) with 
value into TH • This subgroup can be considered as the 

v 
connected component of a subgroup G of 0(3) by adjunc-
tion of the symmetry - 1. Then f" can _be considered as 
the restriction to Go of the 1-cocycle fv onto G obtained 
by defining arbitrarily J,,(- 1) == a E TH ,and, if r EGO. 
and then - rEG, v 

Jv(- r) == fv(r) + rJ,,(- 1) == J,,(- 1) - f,,(r) (85) 

and 
2fv(r) == (1 - rLf,,(- 1). (86) 

J. Math. Phys., Vol. 14, No.6, June 1973 
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If we call b one of the solutions of the equation 2b = a 
into TH , we get 

fv(r) = (1- r)b, (87) 

where b is an arbitrary element of TH • In fact we 
showed that any 1-cocycle onto Go is a l-coboundary. 

Finally we have 

fx(r'r) = fx(r') + r'fx(r) + h (r)fv(r'). (88) 

Using the same method as above, and defining arbitrarily 
t(- 1) = a, we have 

t(- r) = fx(r) + rfx(- 1) + !t(- l)fv (r) 

= t(- 1) - fx(r) + h(r)lv(- 1), 

and then 

2fx(r) = (1 - r).fx(- 1) + h (r)a - !t (- 1)(1 - r)b. 

If we put 

213=0', 2e==!t(-1), 

then 

fx(r) = (1 - r){f3 - eb} + h(r)b. 

5. THE HOMOGENEOUS SPACES WITH BOUNDED 
INVARIANT MEASURE 

(89) 

(90) 

(91) 

(92) 

Now that we have described all closed subgroups of S, 
we are ready to filter out among them those which give 
a positive answer to our problem. 

We are going to prove a few theorems which among all 
those subgroups, will retain or reject some ones; the 
remaining ones, for which no theorems are available, 
will have to be studied separately. 

Theorem 1: For any closed subgroup H of S contain-
w' 

ing, as a closed invariant subgroup, K H = F 0 {X (t), 
X (t), t} with Z6 C F and t E Z or R, the homogenXeous 

v 
space S /H carries a bounded invariant measure. 

An easy computation shows that KH is unimodular; let us 
first show that S/KH is compact, i.e., that the theorem is 
true for H = K H • We have 

S/KH = {(R6 0 R) 0 SO(3)}/KH ~ {(R6 0 R)/KH}' SO(3), 

(93) 
and it is sufficient to show that the first factor is com­
pact. Let (X, t) be an element of R6 0 R: We can decom­
pose it in an unique way according to 

(94) 

where Xl E F, X 2 E R6/F == TF , t1 E Z or R, t2 E T 
or {O}. Then there exists a unique (Y l' Y 2) E R6 == 

w 
F 0 TF such that 

(95) 

x = Y + w(t Y ,(X (t ),X (t))). 
1 1 12 xl vl 

w 
When (X1 ,X2 ) runs through R6 = F 0 TF , (Yl' Y2 ) do the 
same and,for each t, the application (X l1 X

2
) -) (Y

1
, Y

2
) 

is an homeomorphism. Hence, 
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(X, t) == {[Y + w'(t Y ,<x (t ), X (t ))), t Y
2 1 12 xl v1 1 

+ (X (t ),X (t ))],(t ,t )} 
x 1 v 1 1 2 

= {(O, Y )(0, t )}{(Y ,(X (t ), X (t ))), (t
1

, OJ}, (96) 
221 xl vI 

and we conclude that (R6 0 R)/KH is homeomorphic to 
R6/F x Tor R6/F x {O}, and compact as soon as Z6 c 
F. But as H contains KH as a closed subgroup, the 
theorem is true thanks to our first strategical remark. 

Theorem 2: H is not a solution as soon as: 

(i) M F = {O}, 

(ii) MF = Z or R, A(FH ) == Z, and m + p < 3, 

(iii) MF == '\(FH) == Rand m < 3, or MF == Rand .\(FH) 
dense, 

(iv) M F == Z or R, .\(FH) = {O}, cp(PH) finite, 

(v) MF = Z or R, .\(FH) = Z, m + p == 3, n + q < 3, and 
cp(PH ) closed, 

(vi) MF = A(FH) = R, m = 3, n + q < 3, and cp(PH) closed. 

Combining (ii) and (iv), we conclude also that 

(ivbiS ) MF = Zor R, .\(FH) = {O}, and m + p < 3. 

Let us first study our problem when H = Ng(KH). Then 

S/Ng(KH) = {(R6 0 R) 0 SO(3)}/(NK(KH) 0 QH) 

"" (R6 0 R)/NK(KH) X SO(3)/QH' (97) 

and we are left with the same problem with the first 
factor. 

w' 
But we know that if K H = F 0 F if is such that 

'\(FH) = {O}, 

then (R6 0 R)/NK(KH ) = (R6 0 R)/(R6 0 MF) ~ R/MF , 

MF={O},Z,orR, (98) 

.\(FH ) = Z, 

then (R6 0 R)/NK(KH) 
w' 

= (R6 0 R)/[R~ EEl (R:J' EEl Z,f)] 0 h (t'), t'}, 
v 

t' EMF = Z or R, (99) 

and, as R~ EEl (R:J' EB Z.f) can be seen to be invariant in 
R6DR, 

(R6 0 R)/N (K ) ~ [R3/(Rm EB ZP)] X R/(t'x (t )It t') 
K H v v v· v 0 0' , 

.\(FH) = R or dense, (100) 

then (R6 0 R)I N (K ) 
K H 

= (R6 0 R)/[(R3 EB Rm) 0 h (t'), t'}], 
x v v 

t' EMF = R, (101) 

and, as R2 EB R:J' can be seen to be invariant in R6 0 R, 

We then conclude that H == Ns (KH) is a solution every 
time that 
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(i) MF = Z or R and .\(FH ) = {OJ, 

(ii) MF = Z or R, and m + p = 3, 

(iii) MF = R, .\(FH) = R or dense and m = 3, 
(103) 

[which in fact reduces to .\(FH ) = R as here X == 0]. 
" 

Those results might have been given by the Theorem 1. 
Conversely, if (R6 0 R)/NK(KH ) is noncompact, then it is 
isomorphic the quotient of two Abelian groups and its 
measure, here the Lebesgue measure, is nonbounded. It 
is the case when 

(i) M F = {OJ, 

(ii) MF = Z or R, '\(FH) = Z, 

(iii) M F = R, .\(FH ) = R or dense 

and 

and 

m + P < 3, (104) 

m < 3. 

Let us now study the same problem for any H but re­
placing S by the corresponding Ng(KH) in the case where 
it is itself a solution for S. Then 

0' 
Ng(KH)IH = (NK(KH) 0 QH)/(KHO PH) 

"" (THO QH)/PH = NHIPH• 

We are going to select some cases where PH is compact. 

In fact, the closed subgroups of 80(3) are 80(3),80(2), 
0(2), or finite: {OJ, cyclic of order n (C n ), dihedral (Cd)' 
tetrahedral, octohedral, icosahedral. In the case where 
cp(PH) is finite, PH is also finite and then compact. 

IfMF=Z orR, .\(FH)=Z,andm +p= 3,andcp(PH) = 
80(3),80(2), or 0(2), then TH is compact in its x and t 
components andf,,(r) = (1 - r)b is continuous. Hence PH 
is closed in the compact: 

cp(PH) x {(TH)" x f,,(cp(PH» x (TH)t} and then compact. 

If MF = .\(FH) = R and m = 3, and cp(PH) = 80(3),80(2), 
or 0(2), then fer) = fv(r) = (1 - r)b is continuous. Hence 
PH is closed in the compact cp(PH) x f(cp(PH» and then is 
compact. 

But, when PH is compact, NH/PH is noncompact as soon al:l 
NH is not, Le., as soon as TH is not. It is so 

if MF = Z or R and .\(FH ) = {OJ, cp(PH) finite, 

if MF = Z or R, .\(FH) = Z, m + P = 3, 

and n + q < 3, cp(PH) closed, (105) 

ifMF= .\(FH ) = R, m = 3, 

and n + q < 3, cp(PH) closed. 

The theorem then comes from the fact that if H is a 
solution, then 

meg/H) = m(S/Ns(KH»·m(Ng(KH)/H). (106) 

Remarks: 

(i) It is this theorem which allows us to neglect the 
study of subgroups constructed from F{O} or with '\(FH) 
dense. 
(2) In the case of Theorem 1, cp(PH ) is necessarily 
closed. In fact TH is then compact, as is also NH• Then 
PH' closed in NH, is also compact, as is also cp(PH) as cp 
is continuous. 
(3) If a group is not retained by Theorem 1, nor re­
jected by Theorem 2, then 9 / Ng (K II) is compact and it is 
sufficient to study Ng(KH)/H "" NHIPH• 

We are first going to list the groups that are retained by 
Theorem 1, what we might call the" Galilean cristallo­
graphic groups": 

w' 0' 
[(Z3 EB Z3) 0 {(n2X (1)/2 + n(X (1) - X (1)/2), nX (1», n)] 0 {(I - r)/3, r}, 

x x v z v v 
w' 

[«Z2 EB R ) EB Z3) 0 {(n2x (1)/2 + n(X (1) - X (1)/2), nX (1», n}] 
K x v u x v v 

0' 
o {«I - r)/3, (1 - r)b), r}, 

w' 
[«Z2 EB R ) EB (Z2 EB R » 0 {(n2X (1)/2 + n(X (1) - X (l)/2)nX (1», n}] 

x x x x v X v v 
0' 
o {(I - r)/3, r}, 

w' 
[«Z EB R2) EB Z3) 0 {(n2X (1)/2 + n(X (1) - X (1)/2), nX (1», n}] 

x x v v "V v 

(107) 

0' 
o {« 1 - r)/3, (1 - r)b), r} , 

w' 
[«Z EB R2) E!7 (Z2 E!7 R » 0 {(n2X (1)/2 + n(X (1) - X (1)/2), nX (1)), n}] 

x x x x v x v v 
0' 
o {«1- r)/3,(l- r)b),r}, 

w' 
[«Z EB R2) EB (Z EB R2» 0 {(n2X (1)/2 + n(X (1) - nX (1)/2», nX (1», n}] 

x x x v v x v v 
0' 
o {(I - r)/3, r}; 

w' 0' 
[(R3 EB Z3)O {nX (l),n}] 0 {«l-r)/3,!(r»,r} "V v t 

w' 0' 
[(R3 EB Z3) 0 {tX (1), t}] 0 {(I - r)/3, r} 

" v v 
w' 0' 

[(R3 E!7 (R EB Z2» 0 {nX (1), n}] 0 {«1 - r){3,j(r», r}, 
x v v v t 

(107') 

w' (l' 

[(R3 EB (R E!7 Z2» 0 {tx (1), t}] 0 {(1 - r)/3, r}, 
x v v v 

w' 0' 
[(R3 Ef) (R2 E!7 Z )) 0 {nX (1), n}] 0 {«I - r)/3,j(r», r}, 

x v v v t 
w' 0' 

[(R3 E!7 (R2 EB Z» 0 {tx (1), I}] 0 {(I - r){3, r}; 
x v v v 
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u' 
[(R3 $ R3) 0 Z] 0 {f(r), r}; 
"V t 

(107") {R~ X T} 0 0(3) [or 0(2): see Istfamily 1, (109) 

(R3 $ R3) 0 R1 0 {r}. 
" v 

(107'") R~ 0 0(3) (or 0(2): see 1st family], 

In brace (107) r E finite group, in brace (107') r E closed 
subgroup of 0(2) x Z2 or 0(2), and in (107") and (107"') 
r E closed subgroup of 0(3). 

Concerning the remaining groups, which are to be 
studied separately, i.e., for which we have to search for 
a subgroup PH of NH such that PH nTH == {oJ and NH/PH 
compact, we are going to classify them according to the 
form of NH = TH 0 Q H , each family giving rise to a 
certain type of proof. 

1st family: 

{[T" (Jl (R~ (Jl T,,)] 0 Z} 0 (0(2) X Z2), 

{Tx $ R~} 0 (0(2) X Z2 or 0(2)), 

{[T" (Jl R~1 0 R} 0 (0(2) X Z 2)' 

{[T,,(Jl (R~ (Jl Z)]O T} 0 (0(2) X Z2 or 0(2», 

cp(Pe) nonfinite or nonclosed. 

As each of those Ne contains, as a closed subgroup, the 
last one, it is sufficient to eliminate this case. But this 
has been done in Ref. 1 (5. 4c), and we refer to it for the 
proof. 

3rdfamily: 

{[Tx $ Tv] 0 Z} x (0(2) x Z 2), 

{[T,,$ Zv]O T} x (0(2) X Z2 or 0(2», 

{Rv x T} x (0(2) x Z2), (110) 

Rv x (0(2», 

{Tv x R} x (0(2) x Z 2)' cp(PH) nonfinite or nonclosed. 

If we project on the noncompact component of TH , we get 
groups of the type Z x 0(2) or R x 0(2), and the projec-{[R~ (Jl Tv] x R} 0 (0(2) X Z2)' 

{[R~ (Jl Tv] x T} 0 (0(2) X Z2)' 

{R~ (Jl Tv} 0 (0(2) X Z2 or 0(2», 

(108) tion of PH is closed too. Hence for these projections the 
problem has been solved in Ref. 1 [5. 4b2-a)] and we 
refer to it for the proof, at least for the second case: 
The generators are of the form 

{R~ X R} 0 (0{2) x Z2)' (Xu, 91), 9/21T irrational, 

{R~ x T} 0 (0{2) x Z2)' X E R, X;OO 0, u unitary vector of R in R x 0(2), 

{R~} 0 (0(2) x Z2 or 0(2)), CP(PH) nonfinite or nonclosed. (111) 

We are going to eliminate this family: as each of those 
NH contains, as a closed subgroup, the last one, it is 
sufficient to eliminate this case. But this has been done 
in Ref. 1 [5. 4b2-J3), 5. 4b2-y)] and we refer to it for the 
proof. 

In the first case, an analoguous proof would show that the 
generators are of the form 

(na, ( 1), 91/21T irrational, 

a the fundamental length of Z, n;oo 0, (112) 

2nd family: 
(0,8 2 ), 92 /21T rational. 

{R~ x R} 0 0(3), We get then 

8 1 /21T irrational, n;oo 0, to the fundamental length of Zt == MF , 

w' 
[«R2 (Jl Z ) $ R2) 0 {(n2 x (1)/2 + n(X (1) - X (1)/2), nX (1», n}] 

x x v v x v v 
U' 
o {(-( (8 l)'PV o'~ (8 1),9

1
), (-('(9 2), 0,{(8), 82 )}, 

91 /21T irrational, e Z/21T rational, P ;00 0, Vo the fundamental length of Z" == (Z"),, , 

0' 
[(R3 $ R2) 0 {nx (1), n}] 0 {(Xv ,f(9 ), e ), (0,f'(9 ), () )}, 

x v v Ot11 t 2 Z (113) 

e 1/21T irrational, e Z/21T rational, X ;00 0, Vo Unitary vector of R v ' 

0' 
[(R3 $ R2) 0 {tx (1), I}) 0 {(Xv, 8 ), (0, 8 )}, 

x v v 0 1 1 

81/21T irrational, 92 /21T rational, X ;00 0, v 0 unitary vector of R v' 

82 /21T irrational, e 1/21T rational, x;oo 0, to unitary vector of R t = M F • 

J. Math. Phys., Vol. 14, No.6, June 1973 



                                                                                                                                    

786 G. Loupias and M. Mebkhout: Central decomposition of invariant states 786 

4thjamity: 

{(Tx EB Rv] 0 R} X (0(2) X Z2), 

{Rv X R} X (0(2) X Z2). 
(114) 

By projection, we have to study the second case. The 
problem is analoguous to the preceding one, treated in 
Ref. 1 [5. 4b2-o)], with one dimension more. We get then 

0' 
«R; EB Zx) EB R~) 0 {(!x(8 1 ),AVO' 0, 81), 

(!x'(8 2 ), 0, J..Ito, 82), (!x"(8 3 ), 0, 0, 83)}, 

8 d271 irrational, 

81/8 2 irrational, 

83 /271 rational, A '" 0, J..I '" 0, 

Vo unitary vector of R v ' 

to unitary vector of R t == MF 

with the same notations. 

5thjamity: 

R x 0(3). 

(115) 

(116) 

The application (ft (r), r) ~ r is here an algebraic iso­
morphism, which becomes topological if and only if the 
subgroup we are searching for is compact. But in that 
case the quotient would not be compact. Hence we have 
to search for subgroups PH such that their projection in­
to SO(3) is nonclosed. But then the closure of this pro­
jection can only be SO(2), 0(2), or SO(3) itself. 

(i) The closure oj CP(PH) is SO(2): We are led to the 
problem for the group R x SO(2), the solution of which is 
in Ref. 1 [5. 4b2-a)], and the answer is positive. 

(ii) The closure oj cp(PH ) is 0(2): one must add to the 
preceding case a symmetry through the origin, and the 
answer is positive too. 

(iii) The closure oj cp(PH ) is SO(3): 

(a) Let us first show that PH cannot be discrete. Let 
BE c SO(3) the ball BE == {r E SO(3), Ilr - 111 < E}. For E 
sufficiently small, B. is such that if s, t E BE and 
[s,[s,t]] == 1,then [s,t] == 1; if s,t E B.,then [s,t], 
[s, [s, t], [s, [s, [s, t]]], •.• is a sequence in BE which con­
verges to 1. 7 (Here [s, t] == sts- 1t- 1 ). 

Let Yi == (ft (ri), r i ), i == 1,2 and r i E Bo and Yi+1 == [Y1'Y;] 
(0, [r 1> r iJ) == (0, r i+ 1) for i 2: 2. Then r i E B. and {r i} or 
{y i} are sequences tending to 1. As PH is discrete, Yi = 1 
for i large enough. In particular for i 2: 4, Y i = 1 im-
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plies Yi-1 = 1 and then Y3 == 1. But then [Y1'Y2] == 1 and 
the set of Y i is Abelian. Then cp(PH) n BE is Abelian and 
generates cp(PH } == SO(3) which should be Abelian. 

(m So PH , the connected component of the identity in PH' 
o 

cannot be reduced to a point. Since cp is here a contin-
uous injective group isomorphism, cp(PH ) is a connected 

o 
closed subgroup of SO(3): i.e., either SO(2) or SO(3) it­
self. But it has been shown in Ref. 1 [5. 4c-y)] that in 
this case cp(PH) == SO(3), which Is contradictory to our 
hypothesis. (We refer to Ref. 1 for the proof). 

We get then finally 

(R~ EB R~) x «Alo' 81 ), (0, 82 )) 

81/271 irrational, A'" 0, 

to the unitary vector of R t == MF • (117) 

CONCLUSION 

We have then listed all the symmetry groups we were 
aiming at. As in the case of the Euclidean group, we 
have to notice that they are defined up to a conjugation 
in g, while the symmetry groups are usually classified 
up to a conjugation in the general linear group. 

The families we have obtained can be considered as 
"Galilean extensions" of the ones obtained in the case of 
the Euclidean group, in the sense that we do not obtain 
fundamentaly new groups. In fact, we get 

(1) one-, two- and three-dimensional cristallographic 
groups in x, v and t (107), 

(2) one-, two- and three-dimensional cristallographic 
groups in v and (or) t only (107'), 

(3) a cristallographic group in t alone (107"), 

(4) a group of the form r(R~ EB R~) 0 R) 0 K, where K is 
a closed subgroup of SO(3) (107"'), 

(5) some "heliCOIdal groups" in t or (and) v direction 
(113,115,117). 
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Some general properties belonging to constants of motion for geodesics and charged particle orbits 
are derived. A constant of motion for geodesics is seen to be a function on the cotangent bundle 
which has vanishing Poisson bracket with the "energy function" determined by the metric tensor. 
The resulting algebraic structure on the set of constants of motion is closely related to the Lie 
algebra of Killing tensors. Each constant of motion is shown to provide a family of mappings of 
geodesics into geodesics. Constants of motion for charged particles also possess a Lie algebra 
structure. The relationship of Killing tensors to charged particle constants of motion is derived. The 
linear and quadratic constants of motion for charged particle orbits in the charged Kerr metric 
illustrate the results. Examples of valence 2 Killing tensors are given in an appendix. 

1. INTRODUCTION 
The analysis of physical processes in curved space­
times requires a knowledge of the trajectories of test 
particles. The calculation of these trajectories is a 
formidable task in general, but it is feasible if constants 
of motion are known. For geodesics! or charged par­
ticle orbits, the norm of the momentum is conserved. If 
three other constants of motion are known, the momen­
tum may be computed algebraically at each point of 
the trajectory, thereby reducing the orbit problem to 
first order differential equations. A constant of motion 
which is linear in the momentum exists whenever the 
metric admits a one-parameter group of isometries. 
The origins of higher degree constants of motion are 
more obscure. Some examples are given in Appendix 
B. 
The Kerr metric provides a physically important exam­
ple of a quadratic constant of motion. Because this 
metric may be identified as the field of a rotating black 
hole, calculations in black hole physics rely heavily on 
the properties of geodesics and charged particle orbits 
in the Kerr metric. The discovery of the quadratic 
constant of motion2 has made it practicable, for exam­
ple, to construct astrophysical models of matter accre­
tion onto black holes and to calculate radiation patterns 
from test particles near black holes, without restricting 
consideration to the equatorial plane. This quadratic 
constant of motion arises from a Killing tensor of 
valence 2.3 

Motivated by this example, the present paper discusses 
some properties which are common to constants of 
motion of all degrees. Section 2 reviews some aspects 
of Killing tensors, including the generalization of the 
Lie algebra of Killing vectors to a Lie algebra of Killing 
tensors of all valences. In Sec. 3 a constant of motion 
for geodesics is regarded as a function on the cotangent 
bundle which is constant along the integral curves of 
the geodesic spray. This leads immediately to a Lie 
algebra of the constants of motion for geodesics. In 
addition, each constant of motion is seen to determine 
a vector field on the cotangent bundle which commutes 
with the geodesic spray, thereby providing a one-para­
meter family of transformations of geodeSics into geo­
desics. Section 4 shows that constants of motion for 
charged particle orbits enjoy the same properties. 
Charged particle constants of motion for the charged 
Kerr metric are discussed. 

2. KILLING TENSORS 

In a Riemannian or pseudo-Riemannian space, a Killing 
tensor is a completely symmetric tensor Kab •.• c 

which satisfies the Killing equation 

787 J. Math. Phys., Vol. 14, No.6, June 1973 

(2.1) 

where Va denotes covariant differentiation. A constant 
of motion for geodesics is associated with any such 
Killing tensor. To be explicit, suppose P a is the co­
variant form of the tangent to a geodesic congruence, 
so that Pm Vmp a = O. Then Kab ..• cP;P b" ·p c is con­
stant along the geodesics: 

Pmvm(Kab •.• cPaPb " 'Pc ) 

= PmPaPb ••• Pc V (mKab • .• c) = O. (2.2) 

The metric tensor trivially satisfies the Killing equatiDn, 
in consequence of which the norm of the tangent to a 
geodesic is conserved. The symmetrized outer product 
of Killing vectors also satisfies the Killing equation, the 
constant of motion being simply the product of those 
associated with the Killing vectors individually. To 
distinguish these trivial cases, a Killing tensor is said 
to be reducible if it can be written as a fixed sum of 
symmetrized outer products of lower vale'nce Killing 
tensors and the metric tensor.3 Otherwise it is irre­
ducible. 

The set of Killing tensors on a space enjoys a Lie alge­
bra structure which is a generalization of the Lie alge­
bra of Killing vectors using the Lie bracket as multipli­
cation. One first introduces a Lie algebra on the set of 
completely symmetric contravariant tensors of all 
valences. Let sab ... c and Tab ... d be symmetric ten­
sors of valence m and n, respectively. Their skew pro­
duct, pb .. . f, is a symmetric tensor of valence m + n - 1 
and is given by4 

pb ... f = mSr(b . .• corTd • •• f) - nTr(b . •• do r se . .. f). 

Suppressing indices, this will be written 
(2.3) 

p = [S, T]. (2.4) 

The product, so defined, is anti symmetric in Sand T, is 
linear in each slot, is unchanged if ordinary partial 
derivatives are replaced by covariant derivatives, re­
duces to the Lie derivative of T along S if S is a vector 
field, satisfies the Jacobi identity and the following 
Leibnitz rule: If T n V denotes the symmetrized outer 
product of tensors T and V, then 

[S,Tn V]=[S,T]n V+[S,V]nT. (2.5) 

Geroch5 has pointed out that a Lie algebra of Killing 
tensors can then be defined as the subalgebra of sym­
metric tensors Kab • •• c which commute with the metric 
tensor gab, 
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rK,g] = O. (2.6) 

This equation is identical to the Killing equation when 
covariant differentiation is used in the product definition. 
One easily verifies that this subset is closed under the 
operations n, [ , ], and addition of two tensors of equal 
valence. 

3. CONSTANTS OF MOTION FOR GEODESICS 

A function F, which depends both on position in a mani­
fold M and on a vector P" in the cotangent space at the 
point of M, should properly be regarded as a function on 
the cotangent bundle, T*M, of M. Since the cotangent 
bundle to any manifold is endowed with a canonical 
Hamiltonian symplectic structure nail [cf. Appendix A], 
indices6 of tensors on T*M will be lowered via naB and 
raised via its inverse, nail. In particular, the gradient 
of a differentiable function F may be regarded as a 
vector field, 

(3.1) 

This field may then act on another differentiable function 
G, 

(3.2) 

the result being the Poisson bracket of F and G. On 
T*M, then, scalar functions may be combined by addi­
tion, multiplication, or Poisson bracket multiplication. 

A constant of motion for geodesics is a scalar function 
K on T*M which is constant along the curves of T*M 
obtained by lifting geodesics from M. Because a unique 
geodesic is associated with a particular covariant vec­
tor at a particular point in M, the lifted geodesics form 
a simple congruence of curves on T*M. The geodesic 
spraY,ga is the vector field tangent to this congruence. 
As shown in Appendix A,ga is given by 

go. = nallo~, (3.3) 

where g is the energy function l 

(3.4) 

The condition that K be a constant of motion for geode­
sics is therefore 

(3.5) 

Constants of motion are the functions which commute 
with the energy function g. From the properties of the 
Poisson bracket it follows that the sum, product, or 
Poisson bracket of two constants of motion is again a 
constant of motion. 

The bracket operation for symmetric tensors, as defined 
in Sec. 1, is closely related to the Poisson bracket. A 
function on T* M , 

(3.6) 

may be associated with any contravariant symmetric 
tensor Fa b ••• C on M. If F and G are the functions 
associated, respectively, with Fab .•• C and Gab .•. d, 

then the tensor bracket operation yields a new symmetric 
tensor whose associated scalar function is [F, G]p. In 
the set of constants of motion, those which have the 
simple form Kab • •• cp aP b' •. P c thereby constitute a 
subset which is closed under the Poisson bracket opera­
tion. 
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Another important property of constants of motion 
follows immediately from these considerations. If K is 
a constant of motion, then the geodesic spray is Lie 
dragged along the gradient vector field Ka: 

(3.7) 

This follows from the fact that, since n all gil is a gra­
dient and Or nail] = 0, then £gn all = O. Using thiS, to­
gether with \he hypothesis that gao cf\. == £g K = 0, one 
obtains 

0= os(£gK) = £gOIlK = £g(naIlKa) = nas£gKa. (3.8) 

Because nas is of maximal rank, this implies £gKa = 
- £Kg a = O. In this waY,a constant of motion K moves 
geodesics onto geodesics. 

In a four-dimensional space, suppose three independent 
commuting constants of motion, K, L, M, are known. On 
T*M, since gao aK, Ka o ag , Kao cl-, etc., all vanish, the 
vector fields ga, Ka, La, Ma are tangent to the 4-sur­
faces of constantg,K,L,M. By the argument of the 
preceding paragraph,ga, Ka, La, Ma all commute as 
vector fields and, therefore, may serve as a basis on 
these 4-surfaces. Functions k, 1, m may be chosen such 
that Kao 0.= %k, Lcxo a = 0/01, Mcxo a = %m, and 
such that the points of a lifted geodesic are given by 
specifying constant values for g,K, L,M,k, l, m. 

4. CHARGED PARTICLE ORBITS 

The discussion of the preceding section generalizes to 
the case of charged particles mOving in a Maxwell field. 
In four-dimensional space-times with physical Maxwell 
field, the charged particle orbits are determined by the 
Lorentz equation of motion: 

(4.1) 

where q is the charge of the particle and Fa b is the Max­
well field. The orbits satisfying the Lorentz equation 
for a fixed value of q constitute a Single congruence of 
curves when lifted to T*M. The vector field tangent to 
the congruence is given by 

(4.2) 

In this equaUon,g is the energy function constructed 
from the metric as before, and n as[ q] is the symplec­
tic structure appropriate to the charge q [cf. Appendix 
A]. Since all the properties of the canonical Hamiltonian 
structure which were used in the discussion of geode­
sics are also properties of n as[ q], it follows that con­
stants of motion for particles of charge q possess the 
same algebraic structure. 

The relationship of Killing tensors to constants of 
motion for charged particle orbits is slightly more in­
volved than in the case of geodesics. Suppose a function 
K on T*M is of the form 

(4.3) 

o 1 2 
for symmetric tensor fields K ,Ka,Kab,'" on M. When 
the geodesic spray gCX [in the form given by Eq. (A2) of 
Appendix A] acts on K, term by term, each resulting 
term is of a different degree in P" and must therefore 
vanish by itself if K is to be a constant of motion for 
all geodesics. The individual terms then show that each 

o 1 2 
of the tensors K, K", K" b, .•. , must be a Killing tensor. 
When gcx[q] [in the form given by Eq. (A3) of Appendix A] 
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is applied to K, however, the result vanishes for arbi­
trary P a if and only if,8 for each value of n, 

n (n +) 

v(aKb",c) + (n + 1)qF
m

(a K b",c)m=: 0, (4,4) 

Two special cases, which occur in the charged Kerr 
metric, deserve mention, Suppose K is linear in P a so 
that 

o 1 
K = K + Kap a' (4,5) 

The conditions that g '1 q]o aK =: 0, in this case, are 

V (aKb) =: 0, (4,6) 

and 
(4.7) 

) 

Therefore Ka must be a Killing vector, and, uSing the 
Maxwell equation O[aFbc] = 0, the Eq. (4. 7) is seen to 
be equivalent9 to the condition 

(4.8) 

The two Killing vectors of the charged Kerr metric in 
this way yield coostants of motion for particles of ar­
bitrary charge. 

The Kerr spacetime also admits a quadratic constant 
of motion for charged particles,2.10 

(4.9) 

2 
where Kab is the irreducible Killing tensor.3 The condi-
tions (4.4) in this case yield the two relations 

(4. 10) 

and 

(4.11) 

The first equation is the Killing equation. Exploiting 
the antisymmetry of F ab' the second relation is easily 
verified by writing the Killing tensor of the Kerr metric 
in the form10 

(4. 12) 

APPENDIX A: HAMILTONIAN STRUCTURES AND 
LIFTED ORBITS ON PM 

The canonical Hamiltonian structure on the cotangent 
bundle, T*M, may be defined invariantly by means of 
certain bundle projection maps. Let ~ a be a vector at 
a point of T* M, so ~ a may be regarded as a point in 
TT*M, the tangent bundle to T*M. The bundle projection 
h from TT*M to T*M maps ~a into the point of T*M to 
which it is attached. This point may be regarded as a 
covector p a at the point of M under the fiber to which 
~ a is attached. At the same time, the projection 11 from 
T*M to M determines a differential map 1f * from 
TT*M to TM which maps ~a into a contravariant vector 
~ a at the point of M under the fiber to which ~ a is 
attached. The scalar ~ ap a is naturally determined in 
this way from ~ a. Doing this for each vector ~ a on 
T*M defines a canonical1-form (J a on T*M with values 
(J a~ a = ~ap a' The curl of (J a is the canonical Hamil­
tonian symplectic structure: 11 

(A1) 

The s)lmplectic structures 0 C<I,[ q] may be obtained in 
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the same way. Let Va be a potential for a Maxwell field 
F ab' The projection h from TT*M to T*M may be chang­
ed to h [q] so that, instead of the covector p a at a point 
in M, the projection yields p a + qVa at the same point 
inM. Using the mapsh[q] and 11* a 1-form (Ja[q] is de­
fined as above, The curl of () ,Jq] is 0all[q]. The gauge 
freedom in Va is of no consequence since it does not 
enter 0a8[g]-

Regarding each point of T*M as a point of M together 
with a covariant vector at that point, it is natural to 
adopt coordinates (xa,p) on T*M such that x a are co­
ordinate of the point in M and P a are the components 
of the covector in the same coordinate basis of M, Then 
the components of 0 all are constants and g ao a takes the 
form 

gao 0:= ga8(0 g)a = ~ _0 _ _ JK _0_ 
a 8 a op a oxa oxa op a 

= gabpb _0 _ _ l (0 gbc)p p _0_ 
oxa 2 abc op a 

(A2) 

If p is a parameter alon~ the integral curves of ga, then 
dxa/dp =:gabPb and dPaldp = - ~(a~bc)PbPc' The first 
equation identifies P a as the covariant tangent vector 
to the curve projected onto M. The second equation 
verifies that the projected curves are, in fact, the geo­
desics of M. 

In a special coordinate system of this type on T*M, it is 
straightforward to check that 

ga[q]o a 0:= oa8[q](a 8g )o a = gao a + q Fa bP b o! a' (A3) 

If now the integral curves of ga[q]are parametrized by 
p, then 

dp a_I ( b c )p b ([ji - - 2" 0 ag ~ c + q Fa P b , (A4) 

or 

(A5) 

which is the Lorentz equation of motion. 

APPENDIX B: SOME EXAMPLES OF KILLING 
TENSORSOF VALENCE 2 

(1) Any covariantly constant symmetric tensor is a 
particularly simple solution of the Killing equation. If 
such a tensor is nondegenerate, it may be regarded as 
a second metric tensor compatible with the original 
affine connection, 

Covariantly constant tensors with zero determinant 
occur whenever the space is decomposable into com­
plementary, orthogonal surfaces with the induced metric 
on each surface depending only on the coordinates of 
that surface,12 

(2) If two (pseudo- )Riemannian spaces with metrics 
gab and g~b have the same geodesic paths, then they 
are projectively related. The affine connections have 
the relationship 

for some scalar field lJ;. It follows that 

is a Killing tensor in the space of gab,12 

(B1) 

(B2) 
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(3) An affine collineation is a vector field ~ a satisfying 
£t rg c = O. Using the identity 

(B3) 

it is seen that V(bVc~a) == 0 if ~a is an affine collineation. 
In that case V (a~ b) is a Killing tensor. 

A projective collineation, 7] a, satisfies 

for some scalar field 1/>. The same identity (B3) then 
shows that the tensor 

satisfies the Killing equation when 7]a is a projective 
collineation. 13 

(B4) 

(B5) 

(4) In four-dimensional space-time, each vacuum solu­
tion of the Einstein field equation for which the Weyl 
tensor is of type {2, 2} admits a trace-free conformal 
Killing tensor3 Pab which satisfies the equation 

(B6) 

Except in the cases of the C-metric and its rotating 
/feneralization due to Kinnersley,14 the divergence 
3vmPcm is the gradient of a scalar a,15 Then the tensor 

Kab:== P ab - ag ab (B7) 

is a Killing tensor. The result holds equally well for 
the charged versions of these metrics. 
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Hypercontract,ivity for fermions 
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If T is a fermion one-particle operator, with II T II < I, then T induces a bounded map from L 2 (e) .... 
LP (e), for some p > 2, where e is the fermion von Neumann algebra. The proof is an adaptation to 
the fermion case of the corresponding proof for bosons given by Nelson. This leads to a generalization 
of a theorem of Gross, inasmuch as T is not required to be self-adjoint. 

Recently, Nelsonl has given a quick proof of a hypercon­
tractive bound for free bosons using stochastic integrals. 
For fermions, the relevant algebra is noncommutative, 
and so cannot be regarded as an algebra of random 
variables in the conventional sense. Stochastic integra­
tion, therefore, is not immediately applicable. However, 
all one needs are special properties of Gaussian sto­
chastic integrals which are equivalent to properties of 
Wick products as given by Wick's theorem. It is the 
latter which carryover immediately to the fermion 
case. 

Let JC be a complex Hilbert space (we may assume that 
dimJC == co) and let J be a conjugation on :Ie (Le., J is 
antilinear, antiunitary, and J 2 == 1) 0 Let rr = EB ~= rr n be 
the antisymmetric Fock space over JC, and let C (z), for 
z E JC, be the creation operator on rr. 2 

Put A(z) == C(z)*, and define the field B(z) by B(z) == 
C(z) + A(Jz), z E :Ie. 

Let e denote the smallest von Neumann algebra con­
taining all the B(z), and let m(') denote the vacuum ex­
pectation value; m(u) == (n, un), \fu E e. Then3 m is a 
faithful, central state on e, and (rr, e, m) is a regular 
probability gage space in the sense of Segal. 4 

For 1:s p < co, one defines LP(e) to be the completion 
(modulo null elements) of e with respect to the norm 
II u lip = m(lu IP)llp == (n, (u*u)p/2n)l/p. Loo(e) is, by 
definition, e with respect to its operators norm.5 

LP(e) is the fermion analog of the" Q-space" function 
spaces LP(Q), constructed from the free boson field. 
Indeed, LP(Q) is just the corresponding completion of 
;nt, the maximal Abelian algebra generated by the time­
zero free boson fields, with respect to the boson Fock 
vacuum. 6 

One can prove the following. 

Theorem 3 •7 : The map u ~ un, from e -? rr, extends 
to a unitary operator D : L 2 (e) -? rr, and the action of e 
on L2(e), given via D, is left multiplication; Le., if u E e 
and v EO L2(e), then D-luDv == uv. 8 

If T is an operator on:Ie, then by "tensoring"l,3,9 one 
obtains an operator, denoted r(T), in IT. [r(T) acts on 
rr n like T 1)9 '" 1)9 T (n factors)]. 

We are now in a pOSition to state the following. 

Theorem: With the notation as above, we suppose 
that II T II < 1. Then D- 1r(T)D is bounded from L2(e) -? 

LP(e) for some p > 2. 

Proof: We may, and shall, assume that JC == L2(R, dk). 
This is possible because unitary equivalence between 
one-particle spaces induces an equivalence between 
the corresponding Fock spaces and the operators there­
on. Since m is given by a vector state, it is evident that 
the LP-norms are unchanged by such equivalences. We 
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may further suppose that J is given by complex conjuga­
tion in L 2(R, dk). 

Thus, for f EO L 2(iR, dk), we can write 

B(f) == J f(k}[b*(k) + b(k)] dk, 

where b*(k) and b(k) are the usual fermion creation and 
annihilation forms and satisfy the usual anticommutation 
relations. 

Let \}I(k 1, ••• k n ) E rr n , be an n-particle vector of the 
form 

N 

\}I = :0 b*(f ij ... b*(f ~)n 
i=l 

for some N, and f J E L2(R, dk), 1:s i:s N, 1 :S j :S n. 

Such vectors are dense in rr n' \}I can be written as \}I == 
:07=1 : B (f 1) ... B (f ~) : n, where: : denotes the Wick pro­
duct. Since all the pairings are finite, we can" undo" 
the Wick product to obtain a polynomial in the fields 
B(Jj). Thus, \}I has the form \}I == wn, with WEe, and 
where W can be written as 

for some antisymmetric square-integrable function w. 
Now, 

But D-1WD acts on L2(e) by left multiplication, and so 
D-lWDl == D-lWD. Hence, writing \It == D-l\}l, 

II \ltll~ == II D-lWDII~ = (n, w*wn) 

= (n, JW(lv ... , In)w(k v ... ,kn) : B(Zn)' .. 

'" B(ll): :B(k l )·· .B(k n) :dl l " 'dknn) 

== n II/ w II ~ (by applying Wick's theorem). 

Similarly, one obtains 

11~11~1 == (n, (w*W)jn) 

== :B j"w(k 1, 00., k~)" ·w(oo " k;j) 

x w(k~j~V "')"'U)("',k 2nj)dk 

where (k l' ... ,k 2nj) is a permutation of (k 1, k 2, ..• ,k nj' 
k v k 2' ... , k nj) such that no two variables in a given 
w-factor coincide (this is just the statement that Wick 
pairings inside a Wick monomial do not contribute) and 
where the sum is over all such permutations. The 
proof now proceeds as in Ref. 1. That is, one notes 
that each summand is bounded by II w II ~j (by repeated 
use of the Schwarz inequality) and that the number of 
allowed permutations is smaller than the number of all 
permutations, viz. (2nj - 1) (2nj - 3)' .. 3. 1. 
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Hence, 

II~II~~~ (2nj-1) (2nj- 3)···3.11Iwll~j 

= (2nj ~ ~»'." 3.1 II ~1I~j ~ (2j)njll~ll~j, 
n. J 

Le., for \}I of the assumed form, II ~112j::O (2j)n/211 H 2 . 
But, as already noted, such \}I are dense in g: n' and these 
estimates imply that their image under D-1 is dense in 
L2i(e) n D-1g:n (in the L2j-norm).10 Therefore, the 
above inequalities remain valid for all \}I E g: n' 

An application of the Riesz-Thorin-Kunze theorem 11 

(interpolating between j = 1 and j =: 2) yields 

for 2 ~ P ~ 4, 

For U E L2(e), we can write U =: :0:=0 un' with DUn E g: n' 
Then 

II D- 1r(T)DuII p ~ :011 D- 1r(T)Du n II p 
n 

~:0 4(1-2/p)n II D- 1r(T)Du
n

112 
n 

~ :0 4(1-2/p)n II r(T)Dun II 
n 

~ :0 (4(1-2/P)11 T II)n II u11 2. 
n 

Since II Til < 1, the geometric series converges for 
p - 2 sufficiently small. QED 

Corollary: D-1r(Tk)D is a contraction from L2(e) ~ 
L4(e) provided k is sufficiently large. 

Proof12: For U E L2(e), write U = a1 + u', where 
(Du', 0) = 0. Then, if a = 0, we have, as in the proof of 
the theorem, 
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II D- 1r(Tk)Du/l4 ~ :0 (211 T II k)n /I Dunll 
n 

00 

~:0 (2I1Tllk)nIlDu'll 
n =1 

for arbitrary 6 > 0, provided k is sufficiently large. 
We can now employ the technique of J. Glimm 13 to 
complete the proof. 
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Similarly, one can show that D- 1r(Tk)D is bounded 
from L2(e) ~ LP(e) for any 2 ~ P < 00 for large enough 
k (depending on Pl. 
If T =: e-x is self-adjoint, with X ~ c 1, c > 0, then the 
corollary reduces to a theorem of Gross3 except that 
we require that ck ~ log2(1 + v'S) whereas Gross re­
quires only ck 2: (log3)j2. 
In conclusion, we remark that interpolation and dualityll 
yield a similar boundedness result from 
LP(e) ~ Lq(e) for 1 < p, q < 00, 

*Supported by the Swiss National Foundation. 
1 E. Nelson, 1. Functional Anal. 12, 211 (1973). 
2See, e.g., Ref. 3. 
3L. Gross, 1. Functional Anal. 10,52 (1972). 
4l. E. Segal, Ann. Math. 57,401 (1953); 58,595 (1953). 
'For further details, we refer the reader to Refs. 3, 4, II, and 1. 
Dixrnier, Bull. Soc. Math. France 81, 9 (1953). 

·See, e.g., I. E. Segal, Bull. Amer. Math. Soc. 71, 419 (1965), and B. 
Simon and R. H¢egh-Krohn, 1. Functional Anal. 9, 121 (1972). 

7l. E. Segal, Ann. Math. 63, 160 (1956). 
8eis identified as a (dense) subset ofL2 (e). 
9r. E. Segal, Trans. Amer. Math. Soc. 81, 106 (1956). 

l02j can be replaced by any p;;' I, since II . lip increases with p. 
11R. Kunze, Trans. Arner. Math. Soc. 89,519 (1958). 
12We would like to thank Roger 1. Plymen for pointing out an error 

in our original proof. 
l3See page 19 of J. Glimrn, Cornmun. Math. Phys. 8, 12 (1968). 



                                                                                                                                    

The characteristic development of trapped surfaces* 
Paul N. Demmie 

University of Pittsburgh at Johnstown, Johnstown, Pennsylvania 15904 

Allen I. Janis 

University of Pittsburgh, Pittsburgh, Pennsylvania 15213 
(Received 23 October 1972) 

Conditions are found that are sufficient to insure the development of trapped surfaces in space­
times whose metrics satisfy the Einstein field equations in vacuum or in the presence of a massless 
scalar field. These conditions involve a topological requirement that a certain two-surface be com­
pact and inequalities that must be satisfied by certain pieces of the characteristic data determining 
these space-times. It is shown that a particular piece of data playing an important role in these 
inequalities is related to angular momentum. 

1. INTRODUCTION 
The concept of a trapped surface-a compact, space­
like two-surface having the property that all null 
geodesics meeting it orthogonally converge locally to 
the future-was introduced by Penrose1 as a charac­
terization of graVitational collapse that has proceeded 
beyond the point of no return. Under rather general 
conditions, if an object collapses sufficiently far that 
trapped surfaces develop in the region surrounding this 
object, then the spacetime containing the object must be 
singular.2 Therefore, an important problem in the 
theory of gravitational collapse is the determination of 
the conditions under which trapped surfaces develop. 

An important step toward solving this problem in the 
case of empty space-times was taken by Pajerski and 
Newman3 (PN). Exploiting the property of the Schwarzs­
child space-time that the region containing trapped 
surfaces is separated from those that do not contain 
trapped surfaces by a nondiverging null hypersurface, 
they generalized the Schwarzschild space-time by con­
sidering a class of space-times each containing a non­
diverging null hypersurface and determining the res­
trictions on the characteristic data for which trapped 
surfaces develop. The present work generalizes their 
work not only to Einstein-scalar space-times, but also 
to a larger class of empty space-times. 
In Sec. 2 the formalism used in this investigation will 
be presented. This formalism was found to be parti­
cularly useful since it provides for a convenient 
characterization of trapped surfaces. In Sec. 3 the for­
malism presented in Sec. 2 will be used to determine all 
Einstein-scalar space-times containing a nondiverging 
null hypersurface. That these space-times are more 
general than those obtained in PN follows not only from 
their being Einstein-scalar space-times rather than 
empty space-times, but also from their dependence on 
an arbitrary function that was required to vanish in PN. 
Evidence suggesting that this function is related to angu-
1ar momentum will be presented in Sec. 3. Also the 
characteristic data for these space-times will be deter­
mined, examined for restrictions placed on them in 
order that trapped surfaces develop, and discussed there. 
In Sec. 4 the results of Sec. 3 will be generalized and it 
will be established that there exist space-times more 
general than those containing a nondiverging null hyper­
surface that also contain trapped surfaces. Finally, ill 
Sec.5 the results of Secs. 3 and 4 will be summarized 
and discussed. 

2. THE FORMALISM 
The Newman-Penrose (NP) formalism4 was found to be 
particularly useful for this investigation of the charac-
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teristic development of trapped surfaces. This for­
malism requires introducing into the tangent space at 
each point of the spacetime a null tetrad system,S 

{
V = {~iJ 

iJx~ , 
n~a 

/),.--
- iJx~' 

m~iJ 6-­- iJx~ , 6=~::}, 
(2.1) 

consisting of two real null vectors, D and /),.. and a pair 
of complex null vectors, 6 and 6, formed from two real, 
orthonormal, space like vectors, s 1 and s 2' as 

and satisfying the orthonormality conditions 

t~n~ = -m"m ll = 1, 

l,,{~ =n~n~ =m~m~ =m"mjl = 0, 

{ m 11 = ( n~ - n m jI - n m-" - 0 
~ "-,, -" -. 

(2.2) 

The components g~ v of the contravariant metric are 
found from (2.2) to be6 

g~V = U(11 nV) - 2m("m V). (2.3) 

The formalism then provides a set of partial differential 
equations equivalent to the Einstein field equations for 
the determination of the gl' v. These equations are given 
in terms of the five independent phYSical components of 
the Weyl tensor C"vp} 

'Ito = - Cl1vpoll1mV{Pmo, 

'lt1 = - Cl1vpoll1nv{Pmo, 

'lt2 =- Cl1vpoml1nVlPmo, 

'lt3 = - CI1Vpoml1nV{pno, 

'lt4 = - C/.JVpoml1nVmPnO, 

(2.4) 

the six independent physical components of the trace­
free Ricci tensor R 11 v' 

~oo = -1R "v tIJ {V = ~oo, 
~01 = - 1 R IJvllJrnv = ~10' 
~02 = -1R "v mlJrnv = ~20' 
~11 = - tR 11 v(t"nv + m IlfiiV) = ~11' 

~12 = - 1R~vnllmv = ~21' 
~22 = - 1Rllvn"nv = ~22' 

Copyright © 1973 by the American Institute of Physics 
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the Riemann scalar R, and the twelve spin coefficients,S 

K::::tJJ:JnJJt v, 1I::::-n JJ ;iii JJn V, 

p:::: tJJ;JnJJmV, Jl:::: -nJJ:vmllm v, 

a:::: £JJ;Jn JJm v, .\ =: - n,,;vm /liiiv, 

T:::: £JJ:vm "n v, 1T =: - nJJ;vrii "t v, 

C/:::: ~(tJJ:vnJJmv -mJJ:vmJJmV), 
(2.6) 

{3 :::: ~(£JJ;Vn"mv - m ,,;vmflmV), 

Y - 1.(£ n"n V -m m"n V) - z ,,:v JJ;V' 

E =: ~(tJJ:vn"£v -m /l;VmJJ£V). 

Before exhibiting the NP equations, a class of null tet­
rad systems appropriate for this investigation will be 
given. This class of null tetrad systems, which consists 
of those systems associated in a particular way with a 
class of null coordinate systems, will simplify these 
equations somewhat. 

In a space-time it is possible to introduce at least 
locally a family of null hypersurfaces given by u :::: const, 
where u is a scalar function satisfying 

g"Vu, "u, v=: O. (2.7) 

Let the XO coordinate be u. Then choose the first mem­
ber of the null tetrad system,D, so that 

(2.8) 

That D is null and hypersurface orthogonal follows from 
(2.7) and (2. 8), respectively. Therefore D is tangent to 
a family of null geodesics. Let the xl coordinate be r 
where r is an affine parameter for D. Then 

dx" a a D-----
- dr ox" - or· 

These properties of D imply that 

K=:O::::(E + E'), p=p, T=a+{3. (2.9) 

Finally let the xm coordinates label the null geodesics 
in the u = constant hypersurface. In this manner a null 
coordinate system 9 

{u,r,x m} (2.10) 

and an associated null vector D are given locally in a 
space-time. The most general null tetrad system con­
taining D and preserving the orthonormality conditions 
(2.2) is {D, A, 0, a}, where 

D = a/or, (2. 11 a} 

A = ~ + Uo + Xmo , 
au or oxm 

(2.11b) 

(2.l1c) 

The null coordinate system (2.10) and associated null 
tetrad system (2.11) are not unique. (2.10) could be 
replaced by any coordinate system in which the co­
ordinate conditions 

(2. 12) 

hold. Also (2.11) could be replaced by any null tetrad 
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system related to it by null rotations about D, 

jj =:D, 

~ =: A + aa + ao + aaD, 

6 = 0 + aD, 

where a is complex, and/or spatial rotations, 

jj =:D, .6 = A, and 6 =: eiCo, 

(2. 13) 

(2.14) 

where C is real, since the conditions (2.2) and (2.8) are 
preserved by these transformations. 

Much of the ambiguity in the null tetrad system can be 
removed by choosing (2.l1c) in a particular way. Under 
(2.13) with a = - W, 0 becomes 

6=:0+aD=~m-a_. 
ax m 

Therefore, the ambiguity between (2.11) and any null 
tetrad system related to it by null rotations about D can 
be eliminated by choosing 

(2.15) 

in (2. 11c). Furthermore, under (2.14), (E - "E) becomes 

(E =- "E) =: (E - €) - iDC. 

Therefore, the ambiguity between (2.11) and any null 
tetrad system related to it by spatial rotations can be 
reduced to those rotations with C =: C(u,x m) by choosing 
E real. This choice and (2.9) imply that 

E =: O. (2.16) 

With (2.15) and (2.16) adopted, it has been established 
that: 

In a spacetime there exists a class of null coordinate sys' 
terns such that anyone of these coordinate systems 

{u,r,x m} (2.17) 

satisfies the coordinate conditions (2.12) and has as­
sociated with it a particular null tetrad system 
{D, A, 0, a} with 

a 
D =: or' 

A =: ~ + U ~ + X m _ a_ 
au or oxm ' 

a o=:~m-
ilx m ' 

(2.18a) 

(2. 18b) 

(2.18c) 

which satisfies the orthonormality conditions (2.2), is 
unique up to spatial rotations (2.14) with C = C(u,x m), 
and has spin coefficients satisfying (2.9) and (2.16). 

From (2.1), (2. 3), and (2.18) the components gJJv of the 
contravariant metric are 

gOJJ ::;: gf, gIl::;: 2U, glm = X m , (2. 19) 

gmn =:_(~m~" +~m~n). 

With the null tetrad system (2.18) chosen, the NP equa-
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tions will now be exhibited lO in three classes: the com­
mutator equations applied to the coordinates, the spin 
coefficient equations, and the spin -coefficient form of 
the Bianchi identities. The commutator equations ap­
plied to the coordinates imply that the spin coefficients 
T, 1T, and /J. satisfy 

and the metric variables U, Xm, and ~ m satisfy 

D~ m = p~ m + a ~ m, 

DU = - (l' + y), 

Ii~m - 6~m = fa - ,B)~m + (~- a)~m, 

ti~m-lixm=-(/J. +y_y)~m_~~m, 

v = - 6U. 

(2.20) 

(2.21a) 

(2.21b) 

(2.21c) 

(2.21d) 

(2.21e) 

(2.21f) 

With (2.9), (2.16), and (2.20) satisfied, the spin-coeffici­
ent equations are 

Dp = p2 + aa + <1>00' (2. 22a) 

Da = 2pa + >lio' (2.22b) 

DT = 2PT + 2aT + >li1 + <1>01' (2.22c) 

Da = (a + r)p + ,Ba + <1>10' (2.22d) 

D,B = p,B + (a + T)a + >li1, (2.22e) 

Dl' = 2Ta +2T,B + TT + >li2 - -AR + <1>11' (2.22f) 

D>.. -liT = p>.. + a/J. + T2 + (a - ~)T + <1>20' (2.22g) 

D/J. - liT = p/J. + a>.. + Tr - (a - ,B)T + >li 2 + -& R, 

(2.22h) 

lip - 6a = pT - (3a - ~)a - >li1 + <1>01' (2.22i) 

lia - 6,B = P/J.- a>.. + aa + ,B~ - 2a,B - >li2 
1 + "24R + <1>11' (2.22j) 

Ii>.. - 6/J. = 1J.1' + (a - 3,B)>.. - >li3 + <1>21' (2. 22k) 

tiT - D" = - 2/J.T - 2T>" + (l' - Y)T -"W3 - <I>12' 

(2.221) 

ti>.. - 6v = (y - 3y - 2/J.)>" + (3a + ~)v - >li4, 

(2.22m) 

ti/J. -liv =- /J.2 ->..~ - (l' + Y)/J. + 2{3v + VT- <1>22' 

(2.22n) 

ti,B - liy = - /J.T + av + (l' - Y - /J.),B - a~ - <1>12' 

(2.220) 

tia - liT = - /J.a - p~ - 2,BT + (3y - y)a - <1>02' 

(2.22p) 
- 1 

tip - (jT = - f.lp - a>.. - 2aT + (y - y)p - >li 2 - 12 R, 

(2.22q) 

tia - 6l' = pv - (T + ,B)>.. + (y - Y - f.l)a - >li3; 

(2.22r) 
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and the spin-coefficient form of the Bianchi identities 
are 

D>li1 - 6>li o = 4p>li1 - (4a - T)>li O + D<I>Ol 

- (j<l>oo - 2p<l>Ol + T<I>OO - 2a<l>10' (2.23a) 

ti>li o -1i>li1 = (4y -11)>li o - 2(2T + ,B)>li 1 + 3a>li2 

- D<I>02 + Ii<l>Ol + P<l>02 + 2a<l>Ol - ~<I>oo + 2a<l>11' 
(2. 23b) 

D>li2 - 6>li1 = 3p>li 2 + 2~>li1 - >">li o + ~D<I>l1 

- j li<l>lO + t6<I>01 - t ti<l>oo - j p<l>u - j (21' + a)<I>01 

-t,B<I>10-ja<l>20 +ta<I>02 +t(f.l + 2y + 2y)<I>oo' 

(2.23c) 

ti>li1 - 1i>li2 = v>lio + 2(y - f.l)>li l - 3T>li2 + 2a>li 3 

- j D<I>12 + j 1i<I>11 - t 6 <I> 02 + t ti<I>01 - t ii<I>oo 

- jy<I>Ol - j ~<I>lO + 2T<I>11 + t (4a + T)<I>02 

(2.23d) 

D>li3 - 6>li 2 = 2P>li3 + 3T>li 2 - 2>..>li 1 + tD<I>2I 

- t 1i<I>20 + j 6 <I> 11 - j ti<l>IO + j v <I> 00 - j >"<I>01 

- jy<l>10 - 2r<l>l1 - t (4,B + T)<1>20 + j (1<1>12' (2.23e) 

ti>li2 - 1i>li3 = 2v>lil - 3/J.>li 2 - 2a>li 3 + a>li4 

- t D<I>22 + t 1i<l>21 - ~ 6<1>12 + ~ ti<I>l1 - ~ v<l>Ol 
2- 2 2 1- 4 

- 3 v <I> 1 0 + 3 /J.<I>11 + 3>..iP 02 - 3>"<1>20 + 3 a<l>I2 

+ j (,B + 2T)<I>21 - t P<I>22' (2.23f) 

D>li4 - 6>li3 = p>li4 + 2(a + 2r)>li 3 - 3>">li2 + 6<I>21 

- ti<l>20 + 2v<l>10 - 2>"<1>11 - (2y - 2y + /J.)<I>20 

- 2(T - a)<I>21 + a<l>22' (2. 23g) 

ti>li3 - (j>li 4 = 3v>li2 - 2(l' + 2/J.)>li 3 + (4,B - T)>li 4 
- (j<l>22 + ti<l>21 - 2 v <I> 11 - JJ<I>20 + 2>"<1>12 

+ 2(l' + f.l)<I>21 - T<I>22' (2. 23h) 

D<I>l1 - Ii <I> 1 0 - 6<1>01 + ti<l>OO + iDR 

= 2(y + Y - f.l)<I>oo - (2a + 1')<I>01 - (2a + T)<I>10 

+ 4p<l>l1 + a<l>02 + a<l>20' (2.23i) 

D<I>12 - (j<l>l1 - 6<1>02 + ti<l>Ol + i IiR 

= (2y - 3/J.)<I>01 + ji<l>oo - ~<l>10 

+ 2(~ - a)<I>02 + 3p<l>12 + a<l>21> 

D<I>22 - 1i<l>21 - 6<1>12 + ti<l>l1 + iM 
= v<l>Ol + ii<l>10 - 4f.l<l>l1 - >"<1>02 

(2.23j) 

- ~<I>20 + (T + 2~)<I>12 + (T + 2,B)<I>21 + 2p<I>22' 

(2. 23k) 
The class of space-times investigated were the Einstein­
scalar space-times. An Einstein-scalar space-time is 
a space-time whose Einstein tensor Gil v satisfies the 
Einstein field equations 11 

Gllv=-T IIV (2.24) 
with 

T II V =</J, II</J, v - HgP o</J , p</J, o)gllv' (2.25) 

where </J is a massless scalar field satisfying the 
equation 
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(2.26) 

From (2. 24) and (2. 25) it is easily seen that the Ricci 
tensor for an Einstein-scalar space-time is 

R~u = -</>, ~</>, u' (2.27) 

The scalar field equation (2. 26) can be expressed in 
spin-coefficient form as 

(2.28) 

where </>, a and </>, a b are the physical components of </>, ~ 
and (</>, a);~' respectively, 

(2.29) 

is the null form of the Minkowski metric, and the Y a b C = 
~ u ·th (~) (t~ ~ ~ -~) th R' . Za~luZbZc WI Za = ,n ,m ,m are e ICCI 

rotation coefficients. With (2.1), (2. 6), (2. 9), and (2.16), 
Eq. (2. 28) becomes 

(D1). + J.lD - p1). - 06 - 2~6 - T6)</> = O. (2.30) 

Not only was the spin-coefficient form of the scalar 
field equation used in this investigation, but also the 
spin-coefficient form of the optical scalars.12 The spin­
coefficient form of the divergence, rotation, and shear 

a of a vector k = k~ - can be shown to be13 
ax~ 

(2.31a) 

r{k) = [1.{k )-Y kC){ka. b _yadbk )]1/2 
2 [a.b [alclbl d' 

(2.3Ib) 

s{k) = [i{k(a.b) -Y(aIClb)kC)(ka•b -yadbkd) - d 2 ]1/2, 

(2.31c) 
respectively. 

The formalism presented here provides not only for the 
determination of the metric variables, spin coefficients, 
physical Weyl tensor components, and scalar field of an 
Einstein-scalar spacetime, but also for a convenient 
characterization of trapped surfaces. To discover this 
characterization, consider the spacelike two-surface 

S(u.r) = {(u, r, xm): u and r are constant}. 

In order for S(u.r) to be a trapped surface,it must be 
compact and have the property that all null geodesics 
meeting it orthogonally coverge locally to the future. 
A vector tangent to one of these null geodesics must 
coincide with either D or 1). on S(u. r)' That which co­
incides with D must be D, since a geodesic is specified 
uniquely by a pOint and a direction in the tangent space 
at that pOint. Therefore,from (2. 31a) its divergence 
must be -po However, the divergence of the null vector 
that coincides with 1). on S(u. r) is not so easily deter­
mined since 

implies that 1). is not everywhere tangent to a null ge­
odesic unless /I = O. For the general, case where /I '" 0, 
the divergence of this vector can be calculated directly 
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from (2. 31a). Let k be this vector parameterized with 
an affine parameter. Then the components of k, k ~ , can 
be expressed as 

k~ = S, ~ 

where S is a solution to g~ uS, ~S, u = O. 

From this it follows that 

k = (1).S)D + (DS)1). + {6S)0 + ((8)6. 

k = 1). on S(u. r) implies that DS = 1, 6S = 0 = 6S on 
S(u. r)' Therefore,from (2. 31a) the divergence of k on 
S(u. r)' (J 0' is 

where the derivatives are evaluated on S(u. r)' Now 

D1).S = D{k~n~) = k~;un~tu + n~,uk~tu. 

Since n~,utu = - rm~ - Tm~,it follows that n~.un~tu = O. 
Also since kll = S.Il' it follows that kl};un~tu = kf'.ut~nu. 
This vanishes on ~". r) since k = 1). there and k 11; tan­
gent to a null geodesic parameterized with an affine 
p~ameter. Therefore, D1).§ = 0 On S(u.r)' Also 66S = 0 
= 66S on S(u,r) since 6 and 6 are differentiations inS(u,r) 
over which 58 and 6S are constant. D1).S = 0 = 66S = 66S on 
S(u.r) and /J. = jI imply that (J 0 = /J.. With the determina­
tion of (J 0' it has been established that: 

The spacelike two-surface 

S(u.r) = {{u,r,x m): u and r are constant} 

is a trapped surface if and only if it is compact and 
everywhere on it the spin coefficients p and /J. satisfy 

p> 0 and /J. < O. (2. 32) 

3. SPACE-TIMES CONTAINING A NONDIVERGING 
NULL HYPERSURFACE 

The possibility that there exist nonspherically symmetric 
Einstein-scalar spacetimes containing both a nondiverg­
ing null hyper surface and trapped surfaces was investi­
gated.14 This investigation began by obtaining the me­
tric variables,spin coefficients,physical Weyl tensor 
components, and scalar field of an Einstein-scalar 
space-time containing a nondiverging null hypersurface. 
Then the characteristic data for this space-time were 
determined and examined for restrictions placed on 
them for which trapped surfaces develop. 

The problem of determining all Einstein-scalar space­
times containing a nondiverging null hypersurface was 
solved using the formalism presented in Sec. 2. For any 
one of these space-times with a particular null coordi­
nate system (2. 17) and associated null tetrad system 
(2.18) introduced in it, the main conditions that were 
adopted are that the nondiverging null hypersurface is 
given by u = 0 and the metric variables, spin coeffici­
ents,physical Weyl tensor components,and scalar field 
are analytic functions of (u,r,x m ) in the region 
{(u, r, xm)}. Subject to these conditions, the NP equations 
involving D and the scalar field equation (2.30) yielded 
these quantities in terms of a set of functions of (xm) 
given on the spacelike two-surface 

So = {{u,r,x m): u = 0 = r}. 
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Some of these functions had conditions placed on them in 
order that the coordinate and tetrad systems chosen 
initially be specified up to scale transformations. 

u=Au, r=A-lr, xm=xm, 

D =A-lD, ~ =A~, 6 = 0; 
(3.1) 

whereas others were determined by the remaining NP 
equations. The functions that remained constitute the 
characteristic data for this space-time. 

The condition that the nondiverging null hyper surface 
is given by u = 0 implies that 

p(O,r,xm) = O. (3.2) 

This and Eq. (2. 22a) imply that 

a(O,r,x m) = 0 and ¢(O,r,x m) = ¢o(xm), 

where ¢o(xm) is an arbitrary function of (x m). These 
and Eq. (2. 22b) imply that 

'lto(O,r,x m) = O. 

p = 0 = a on u = 0 and Eq. (2. 21a) imply that 

~m(O,r,xn) = ~5'(xn), 

where the ~ 0' are arbitrary functions of (xn). 

The presentation of subsequent results will be simplified 
considerably by further specification of (~O'). Consider 
the contravariant metric induced on So' 

Since this is a two-metric, it can be made conformally 
flat by some transformation15 

Therefore, it may be taken to be 

- a a 
-PP -0-=, az az (3.3) 

where z = (x 2 - ix 3 )/.J'i and P is an arbitrary function 
of (xm). With this choice (~O') becomes 

(~O') = (P, iP)/.J'i. 

Now consider the spatial rotations (2.14) with 

Under this transformation ° becomes 

6 = [exp(iC)]1) = ,~ [exp(iCo)]P ~ + .... 
v 2 az 

Therefore, if P is required to be real, then I) is speci­
fied up to spatial rotations with Co = O. Once the con­
travariant metric induced on So is chosen to be (3.3) 
with P real, it is convenient to introduce the differen­
tial operators ti and 516 as 

and 517 = pl+s ~ (P- s17), 
az 

where 'I) is a quantity of spin weight s, that is, a quantity 
that transforms as 
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Tj = [exp( islJl ) ]17 

under the transformation 

60 = [exp(ilJl)]oo 
1 a 

where 00 = ,-P­
v 2 az 

The metric variables, spin coefficients, physical Weyl 
tensor components, and scalar field obtained thus far 
on u = 0 were calculated using (3.2) and the NP equa­
tions expressed in a particular null coordinate system 
(2. 17) and associated null tetrad system (2.18). Simi­
larly, one can obtain on u = 0: 'lt l from (2. 22i), T from 
(2. 22c), a and {3 from (2. 22d), (2. 22e), (2. 21d),and (2.9), 
xm from (2. 21b), 'lt2 from (2. 22j),y from (2. 22f), U 
from (2. 21c), v from (2. 20),A from (22. 22g), and !J. from 
(2.22h). However, (2.17) and (2.18), each being but one 
of the class given in Sec. 2, are not uniquely specified. 
By considering the coordinate transformation between 
(2. 17) and any coordinate system {u, r , X m} satisfying 
the coordinate conditions (2.12), where 

it =Ao(r,xm) + A1(r,xm)u +"', 
r = Bo(r,xm) + Bl(r,xm)u + "', 

x = YO'(r,xn ) + Yf'(r,xn)u + "', 

and the tetrad transformation between (2.18) and any 
tetrad system {D,~, 6, a} related to (2.18) by spatial 
rotations (2.14), where 

C(u,x m) = Cl(xm)u + C 2 (x rn)u2 + "', 

and then considering the effects of these coordinate and 
tetrad transformations on certain metric variables and 
spin coefficients,it can be established thatl 4 : 

The null coordinate system (2. 17) and associated null 
tetrad system (2.18) can be specified up to scale 
transformations (3.1) by imposing the conditions 

[~m(o,O,xn)] = (P,iP)/.J'i, 

where P is real, 

IJ.{O, 0, xm) = 0, 

Xm(u,O,xn) = 0, 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

where g is real and an analytic function of (z, z) with 
spin weight zero, 

U(u, 0, xm) = 0, (3.4e) 

and 

y(u, 0, xm) = O. (3.4f) 

After 'lt l through !J. are obtained on u = 0 as previously 
indicated, only 'It 3 and 'It 4 remain to be determined there. 
They can be calculated from Eqs. (2. 22k) and (2. 23g), 
respecti vely ,once ~¢ (0, r , X m) is calculated from Eq. 
(2.30). After this is done, the metric variables, spin 
coefficients, physical Weyl tensor components, and 
scalar field will be known on u = O. Once they are 
known on u = 0, they can be determined off u = 0 in a 
straightforward but tedious manner from the NP equa­
tions and the scalar field equation. By doing this, sub­
ject to the conditions (3.4), it can be established that: 



                                                                                                                                    

798 P. N. Demmie and A. I. Janis: The characteristic development of trapped surfaces 798 

An Einstein-scalar space-time containing a nondiverging 
null hypersurface has over the region {(u, r, xm)} 
metric variables 

U = (!K - 3To1'o - ttlCPotsCPO)r2 + (U2r 2 + U3r3)u + "', 
(3.5a) 

xm = 2(1' o~ W + T o~ W)r + (Xrar + Xrr2)u + .•• , 
(3.5b) 

~m = ~W + {- ~o~W + [(!K - ToTo - ttlCP05CPo)~W 

+ (tlTo/.J"2 - T~ - HtlCPo)2)~W}r}u + "'; (3.5c) 

nonzero spin coefficients 

p = (! K - TOT 0 - t ts cP 05cp o)u + .•• , 

a = (tlT oN"2 - T~ - Htlcpo)2)u + "', 

J.L = - (!K - ToTo - ttlCP 05CPo)r + {(- AOX:O 

- !~~) + 1i 1r + 1i2r.2}u + "', 

A = {AO + (T~ + tlToN"2 + Ht5cpo)2)r} + (;\0 

+ ;\lr + ;\2r2 )u + ... , 

T = TO + (r 0 + r 1r)u + •.. , 

1/ = (l!.J~(-!K + 3To1'o + ttlcp ot5cpo)r2 

+ (v2r 2 + V31'3)u + ... , 

a = (a o + !1'o) + (ao + a 1r)u + ''', 

{3 = (- a 0 + ! TO) + (~o + ~lr)u + ... , 

y = (-!K + 3ToTo + tsToN"2 + ttlCP ot5cpo 

(3.6a) 

(3.6b) 

(3.6c) 

(3.6d) 

(3.6e) 

(3.6f) 

(3.6g) 

(3.6h) 

+ 2a oTo - 2ao1'o)r + ('hr + Y2r2)u + "'; 
(3.6i) 

physical Weyl tensor components 

l{Io = ~ou2 + "', (3.7a) 

l{I1 = (- tlK/2.J"2 + !ToR' + !tlt5TO - 3Tot5ToN"2 

+t5CPo'6 2CPo/4.J"2 -!To'6cp ot5cpo)u + "', (3.7b) 

l{I2 = (-!K + tsToN"2 + t'6cp ot5cpo) + (4t~ 

+ 4t~r)u + "', 

l{I3 = {(- '6AO/.J2 - TOAO + (Pot5CPo/2.J"2) 

+ (- t5K/ 2.J"2 - ~ 1'oK + !t52To + 31'ot5ToN"2 

(3.7c) 

+ '6CP ot52CPo/4.J"2 + !'TotlCP ot5cpo)r} + (~g + ~~r 
+ ~p-2)u + .•. , (3.7d) 

lit 4 = (lIt~ + l{Iar + l{IV2) + (4t~ + 4t~r 
+ 4tV2 + 4tir3)u + ... ; (3.7e) 

and scalar field 

cP = CPo + {<Po + (!tstscpo - To'6CP oN"2 
- TotsCP oN"2)r}u + '''; (3.8) 

where K = tsts InP, ao = (1/2v'2)'6 InP, and 

U 2'U 3,X!"Xr, i.J. 1, i.J. 2';\0';\U X2' To' Tu V2 , V3 , 0. 0 , 

. {3' {3' • • ,:.: ,Y.o ,T.1 ,T.O ,;.1 ,Y.2 ,Y.1 ,Y.2 ,T.1 ,T.2 
a 1 , l' 2'Yl'Y2' "'0' "'2' "'2' "'3' ':l'j, "'3' "'4' "'4' "'4' "'4 
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and i~ 

are functions of (xm) that can be given explicitly14 in 
terms of the arbitrary functions of (x m), 

P,To,Ao,lIt~,4t~,cpo' and <Po. (3.9) 

The quantities given by (3.5) through (3.8) are deter­
mined up to terms linear in u by specifying (3.9). Terms 
involving higher powers of u can Similarly be obtained 
using Eqs. (2. 21), (2. 22), and (2.23), and (2.30), but they 
will depend on additional arbitrary functions of (xm). To 
find these functions, consider Eqs. (2. 23g) and (2.30). 
Equation (2.23g) determines lIt4(u,r,x m) but only up to 
an arbitrary function l{I4(u,0,xm). Moreover,this func­
tion cannot be determined from the remaining NP equa­
tions. The scalar field equation (2.30) determines 
Llcp (u, r ,x m) but only up to an arbitrary function which 
from (2.18b) is (P(u,O,x m). Moreover, this function 
cannot be determined from any of the NP equations. 
Since l{I4(u,0,x m) and cP(w,O,x m ) are the only quantities 
in addition to (3.9) that are not determined by the NP 
equations or the scalar field equation, it has been estab­
lished that: 

The metric variables, spin coeffiCients, physical Weyl ten­
sor components, and scalar field of an Einstein-scalar 
space-time containing a nondiverging null hypersurface 
are completely determined in the region {(u,r,x m )} 
from Eqs.(2.21),(2.22),(2.23),and (2.30) by specifying 
the arbitrary functions 

P(x m ), 

To(Xm) = T(O,O,X m), Ao(xm) = A(O,O,Xm), (3.10) 

lIt4(u,0,x m), and cp(u,O,x m). 

The arbitrary functions (3.10) constitute the charac­
teristic data for an Einstein -scalar spacetime con­
taining a nondiverging null hypersurface. Before these 
data are discussed, the restrictions placed on them for 
which trapped surfaces develop will be determined. 
From (2.32) the spacelike two-surface S(u.,,) is a trapped 
surface if and only if it is compact and everywhere on 
it p > 0 and J.L < O. Since for fixed u and r the mapping 

f(u.,,): So ~S(u.,,) wheref(u.,,)(O,O,xm) = (u,r,x m) 

is a homeomorphism of So onto S( .. ,,,),S( ... ,,) is compact if 
and only if So is compact. From p.6a) and (3. 6c) it is 
seen that if everywhere on So' the functions K, TO' and 
CPo satisfy 

(3.11) 

then for any positive value of r ,r 0' there exists a suf­
ficiently small value of u,uo,such that p(u,r,xm) > 0 
and J.L(u,r,x m) < 0 for 0 < U:$ Uo and 0 < r:$ ro' 
Furthermore, since on u = 0 (3.5) through (3.8) are 
polynomials in r whose coefficients are analytic functions 
of (xm),r o can be taken arbitrarily large on u = O. With 
this it has been established that: 

In the region {(u,r ,xm)} of an Einstein-scalar space-time 
containing anondivergingnull hypersurfaceu = 0, trapped 
surfaces develop to the future of ther > 0 branch of this hyper­
surface if So is compact and everywhere on it K, TO' and CPo 
satisfy 
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(3.12) 

This result establishes the existence of nonspherically 
symmetric Einstein-scalar space-times that contain 
both a nondiverging null hypersurface and trapped 
surfaces. 

In order to better understand (3.12), the characteristic 
data (3.10) will now be discussed. The function P is the 
most important of (3.10) for the development of trapped 
surfaces, since unless the space like two-surface with 
induced covariant metric, 

has strictly positive Gaussian curvature, K = ts ts In P, 
there is no possibility of satisfying (3.11). In the case of 
a spherically symmetric space-time it is known that 
So is a two-sphere with K > 0. 14 Although in the case of 
an arbitrary space-time,So may be chosen to be a two­
sphere, there do exist other compact two-surfaces with 
strictly positive Gaussian curvature and hence this 
choice is not imperative. 

The function T a is also very important for the develop­
ment of trapped surfaces, since even if K > 0 and even 
in vacuum, the magnitude of TO could be sufficiently 
large that (3.11) is violated. This possibility suggests 
that there may exist a relationship between TO and 
angular momentum. Such a relationship can be obtained 
in the case of the linearized Kerr space-time, whose 
metric depends on two parameters m and a, where m is 
the mass and a is the angular momentum per unit mass. 
The components (gM V) of the contravariant metric of 
this space-time are obtained relative to {u,r,8,<I>} 
from the components of the contravariant metric of the 
Kerr space-time,17 

1 
(r 2 + a 2 cos 28) 

[

-a2 sin28 (r 2 + a2 ) 0 

(r 2 + a 2 ) -(r2 - 2mr + a 2) 0 

x 0 o -1 

-a a o 
by neglecting all terms that are quadratic in a. There­
fore, 

1 [r~ -(r2 ~22mr) 
(g~U) =_ 

r2 0 0 

-a a 

Since (gM V) does not satisfy the coordinate conditions 
(2.12),it is necessary to transform to a coordinate 
system {u,r, 9, ii>} in which (2.12) is satisfied by (gM V). 
This is accomplished by the coordinate transformation 

u = -exp(-u/4m), r = 4m(r - 2m) exp(u/4m), 

9=8, ii>=<1>-~-(a/4m2)u, 
r 

whose inverse transformation is 

u = -4m In(-u), r = (8m 2 - ur)/4m, 

8 = 9, - 4am a 
<I> = <I> + - - In(-ii) 

(8m 2 -ur) m . 
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Under this transformation (gM V) becomes 

1 0 0 

(g'") ~ [~ 2r2(8m 2 - urt1 0 -" ] 
-r~' :sc" 

0 -r-2 

g13 0 

where 

-13 (1 1 1)_ g =-a --+--+- r. 
4m2r 2mr2 r3 

The null tetrad system that yields (gM U) is {D,~, 6, a}, 
where 

- a D--
- ar' 

- a r2 a (1 1 1 \ _ a 
/:). = au + (8m2 -iir) ar -a 4m 2r + 2mr2 + riJr aii>' 

'6 = v'{r (a~ + i csc9 aaii»' 

The Lie brackets of this null tetrad system yield after 
a straightforward calculation the nonzero spin coeffici­
ents 

p = (8m2 -ur) , 
_ 8m 2 r 
Jl = - (8m 2 -ur)2 ' 

T __ ia sin9 [(_1_ + _1_ + 2..\ 
- 2v'2 4m 2 2mr r2) 

+ --+--+- ur ( 1 1 3) __ J 
4m 2r m·y2 r3 ' 

a = - cot9/2v'2'r + !i, ~ = cot9/2v'2'r + !f, 
___ (8m 2 - uri 2)r 
y - (8m 2 - ur)2 . 

The null tetrad system, these spin coefficients, and Eqs. 
(2. 22b) and (2. 22m) imply that the only nonzero physi­
cal Weyl tensor components are WI' w2,and w3 • Fur­
thermore, the metric variables and spin coefficients 
imply that the nonzero characteristic data for linear­
ized Kerr space-time are 

(h) = (1,i csc8)/2v'2m and To = - 3ia s'in9/8v'2m 2. 

Additional evidence that TO is related to angular mo­
mentum can be given by considering the propagation of 
the null tetrad system (2.18) along the generators of 
u = O. A tetrad system is normally said to be propa­
gated without rotation along a timelike curve if and 
only if it is Fermi propagated18 along this curve, 
which in the case of a timelike geodesic is equivalent 
to being parallelly propagated. If this notion is extended 
to null geodesics, then it can be said that the null tetrad 
system (2.18) is propagated without rotation along the 
generators of u = 0 if and only if it is parallelly pro­
pagated along them. From (2.6) it can be shown that 

nM;Vtv = Tmll + Tmll and mM ;ulv = TeM. 

Therefore /:)., <5, and 0 are parallelly propagated along 
the generators of u = 0 if and only if TO = O. 

Like TO' CPa is important for the development of trapped 
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surfaces, since even if K > ° and TO = 0, the magnitude 
of t5ct>0 could be suffiCiently large that (3.11) is violated. 
While the metric and scalar field are determined on 
u = ° by specifying P, TO and ct>o, they are determined in 
a neighborhood o~ u = ° only by specifying A(O, 0, x m), 
'It 4(u, 0, x m), and ct>(u, 0, xm). ~dditional significance of 
A(O,O,Xm), 'lt4(u, O,xm),and ct> (u,O,x m) can be shown by 
conSidering the r = ° hypersurface. The general r = 
constant hypersurface has a normal k where 

a a a a 
k = kll - = gllVr - = o~ - =-. 

axil ,vax" axil au 

From this the r = const hypersurface is spacelike, null, 
or timelike according to the sign of 

g"v kllk v = -2U 

being positive, zero, or negative respectively on r = 
const. The condition (3. 4e) implies that the r = ° 
hypersurface is null. From (3. 4c) and (3. 4e) 

~ = a/au 

on r = O. Therefore, the r = ° hyper surface is a null 
hyper surface generated by null geodesics each with ~ 
as its tangent vector and each parameterized with an 
affine parameter u. From (2.31) the vectors tangent to 
these generators have divergence ~(u, O,x m ), zero rota­
tion,and shear A(U,O,Xm). Equations (2.22m) and (2.22n), 
conditions (3.4), and (2.20) imply that 

tl(u, O,xm) = - ~2(u, 0, xm) - A(U, o,xm)~(u, O,xm) 
- ~ ¢2(u, O,x m), 

~(o,o,xm)=o, (3.13) 

~(u,o,xm) =- 2~(u,0,Xm)A(U,0,Xm) - 'lt4(u,0,x m), 

A(O, 0, xm) = AO' 

Therefore through these AO' 'It 4(u, 0, x m), and ¢(u, 0, xm) 
determine J.l.(u,O,x m) and A(U,O,Xm) and hence the opti­
cal properties of the generators of r = 0. 

4. GENERAL SPACE-TIMES CONTAINING 
TRAPPED SURFACES 

The possibility that there exist Einstein-scalar space­
times more general than those containing a nondiverg­
ing null hyper surface that also contain trapped surfaces 
was investigated.14 This investigation began by obtaining 
the metric variables, spin coefficients, physical Weyl 
tensor components, and scalar field of an Einstein­
scalar space-time. Then the characteristic data for 
this space-time were determined and examined for 
restrictions placed on them for which trapped surfaces 
develop. 

The metric variables,spin coefficients,physical Weyl 
tensor components, and scalar field of an Einstein­
scalar space-time were obtained using the formalism 
presented in Sec. 2. To accomplish this, the main condi­
tion adopted was that, in a particular null coordinate 
system (2.17) and associated null tetrad system (2.18), 
these quantities are analytic functions of (u, r ,xm) in 
the region {(u,r,x m)}. Since the procedure involved in 
obtaining these quantities is exactly that employed in 
Sec. 3,only the results will be stated here. By using the 
techniques of Sec. 3 subject to the conditions (3.4), it can 
be established that: 

An Einstein-scalar space-time has over the region 
{(u,r, xm)} 
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metric variables 

U = {[~K - 3ToTO + (O"OAO + ao~o) - ~ct>l<PO 
-tt5ct> 0t5ct>01r2 +'''}+(''')u+''', (4.1a) 

X m= {2(TO~0 m + To~om)r + ... } + {2(t5AoIv'2" - 2ToAO 

- ¢o"f;ct>oN2")~W + t5AoIv'2" - 2TO~0 

- <Pot5ct>o)~Wlr + "'}u + "', (4.1b) 

~ m = {qr + (po~W + O"o~w)r + ... } + (-~o~w 
+"')u+"'; (4.1c) 

nonzero spin coefficients 

P = {po + (Pg + (Joa o + ~(ct>1)2)r + ... } + {(~K - TOTO 

-tt5ct>o"f;ct>o) + "'}u + "', (4.2a) 

(J = {an + (2PoO"o + 'lt8)r + ... } + {(-p~o + t5ToN2" - T~ 

-Ht5ct>o)2) + "'}u + "', (4.2b) 

{
II - } ~ = -("2K - TOTo - 4:t5ct>o'6ct>o)r + .. . 

+ {(-AoAo - H¢0)2)r + ... } + "', (4.2c) 

A = {AO + (pOAO + 'O ToN2" + ;:g + t("f;ct>0)2)r + ... } 
+ (-'lt~ + . ")u + "', (4.2d) 

T = {TO + (3POTO + (JoTo - t5Po/.J2 + "f;a o/.J2 

+ ct> 1 t5 ct> 0) r + ... } 

+ {(t5AoN2" - TO~O - Cp ot5 ct>o/.J2) + "'}u + "', ) 
(4.2e 

1/ = - W, (4. 2f) 

0= {(oo + ~TO) + (jPoTo + ~aoTo + ct>1"f;ct>oI2v'2" 

+Pooo -aoao)r + ... }+ ("')u + "', (4.2g) 

{3 = {(- a o + ~TO) + (jPoTo + ~O"oTo - t5PoN2" 

+ "f;O"oN2" + ct>1 t5 ct>0/2v'2" + (Jooo - poao)r + ... } 
+ ( .. ')u + ... , (4.2h) 

" = {(-~K + 3Toro + "f;ToN2" - (JOAO - ao~o 

+ ~ct>1¢0 + t t5 ct>ot5ct>o + 200TO - 2aoTo)r 

+ ... } + ( .. ')u + "'; (4.2i) 

physical Weyl tensor components 

'lto =('lt8+'lt6r +"')+("')U+"', (4.3a) 

'lt1 = ( ... ) + ( ... )u +"', (4.3b) 

'lt2 = {(-~K + "f;ToN2" - O"OAO + k t5ct>0"f;ct>0 

+ ~ ct> 1 ¢ 0) + ... } + ( .. ')u + ... , ( 4. 3c) 

'lt3 = {(- t5A oIv'2" - TOAO + Cpo"f;ct>0/2v'2") + ... } 
+{"'}u + ''', (4. 3d) 

'lt4 = N2 + ... ) + (,j,2 +. ")u + "'; (4.3e) 

and scalar field 

ct> = (ct>o + ct>lr + ... ) + {Cpo + (PocP o + ~t5t5ct>0 
- To"f;ct> oN2" - Tot5ct>oN2")r + "'}u + "'; (4.4) 
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where K = 515 InP, a o = (1/2v'2)15 InP, and 

P, Po, 0'0' To, AO' 'ltg, 'ltb, 'lt~, 4~, CPo' CPl' and 1>0 (4.5) 

are arbitrary functions of (xm). 

The terms displayed in (4.1) through (4.4) depend on 
the arbitrary functions (4.5). Terms involving higher 
powers of u and r can be obtained using Eqs. (2. 21), 
(2.22),(2. 23), and (2.30),but they will depend on addi­
tional arbitrary functions of (xm). By reasoning simi­
lar to that used to obtain (3.10), it can be shown that: 

The metric variables, spin coefficients, physical Weyl 
tensor components, and scalar field of an Einstein­
scalar space-time are completely determined from 
Eqs. (2. 21), (2. 22), (2. 23), and (2.30) in the region 
{(u,r ,xm)} by specifying the arbitrary functions 

P(xm), Po(x m), O'o(xm) , T o(x m ), Ao(X m), 'It o(O,r ,xm), 

'lt4 (u,0,x m),4I(0,r,xm ),4I(u,0,xm). (4.6) 

The arbitrary functions (4.6) constitute the character­
istic data for an Einstein-scalar space-time. The func­
tions P(x m), To(Xm),Ao(x m), 'lt4 (u, O,x m), 4I(u, O,x m) were 
already discussed in Sec. 3. The remaining functions 
po(xm), O'o(xm) , 'lto(O,r,xm), and 4I(O,r,x m) through Eqs. 
(2. 22a) and (2. 22b) determine the divergence of Don 
u = 0, p(O,r,xm),and the shear of Don u:::; O,a(O,r,xm). 
Hence these additional functions determine the optical 
properties of the generators of u = 0. 

Of (4.6) it is P,po' TO' and 410 that are important for the 
development of trapped surfaces; since from (4. 2a) and 
(4. 2c), if everywhere on So 

Po 2:: ° and 

then there exist sufficiently small positive real num­
bers U o and ro such that p > ° and IL < ° for ° < u!s u o 
and ° < r ~ r o. Therefore by (2.32) the two-surface 
S(u.r) for ° < u !S uo and 0 < r ~ r 0 are trapped surfaces 
if and only if they are compact, which was shown in Sec. 
3 to be equivalent to So being compact. With this it has 
been established that: 

The region {(u, r, xm)} of an Einstein-scalar space­
time contains trapped surfaces S(u,r) for some range of 
u and r,O < U!S U o and 0 < r ~ ro,if So is compact 
and everywhere on it PO,K,TO and 410 satisfy 

Po 2:: 0 and tK-TOTo-i15cp05410>0. (4.7) 

This result establishes the existence of Einstein-scalar 
space-times more general than those containing a non­
diverging null hypersurface that also contain trapped 
surfaces. 

5. SUMMARY AND CONCLUSIONS 

An investigation of the characteristic development of 
trapped surfaces in Einstein-scalar space-times,of 
which the empty space-times are a special case, was 
discussed in this paper. Mter presenting the formalism 
used in this investigation in Sec. 2, the characteristiC 
development of trapped surfaces in Einstein-scalar 
space-times containing a nondiverging null hypersur­
face was considered in Sec. 3. The main result of this 
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section is (3.12), which states that in a region {(u, r, xm)} 
of an Einstein-scalar space-time containing a nondiverg­
ing null hyper surface u = 0, trapped surfaces develop to 
the future of the r = 0 branch of this hypersurface if the 
spacelike two-surface So = {(u,r,xm):u = ° = r} is com­
pact and everywhere on it the characteristic data P(x m ), 

To(xm),and 4Io(x~) satisfy (3. l1),JK - TOTO - t15 41 0"8""410 
> 0, where K = 1515lnP is the Gaussian curvature of So. 
If (3.11) is to be satisfied at all, then K must be strictly 
positive. This suggests that the collapse of an object 
maintaining a cylindrical or toroidal shape during col­
lapse cannot result in the formation of trapped surfaces, 
since a cylinder has zero Gaussian curvature19 and a 
torus has a region of negative Gaussian curvature.19 

Indeed, it has been shown that at least one cylindrical 
collapse model results in complete collapse without the 
formation of trapped surfaces. 20 The possibility that 
the magnitude of TO could be sufficiently large that 
(3.11) is not satisfied even if K > 0, and even in vacuum, 
suggests that TO is related to angular momentum. The 
role of TO in the criteria for the existence of trapped 
surfaces, even in vacuum, and the evidence presented in 
support of its interpretation in terms of angular momen­
tum are considered to be important results of this in­
vestigation. With the presence of angular momentum 
and asymmetries in the scalar field indicated by TO and 
'6 CPo respectively, (3.12) emphasizes the importance of 
these quantities in determining whether or not trapped 
surfaces develop in Einstein-scalar space-times con­
taining a nondiverging null hypersurface. The metric 
variables, spin coefficients, physical Weyl tensor com­
ponents' and scalar field for these space-times are 
determined in some neighborhood of u = ° by the charac­
teristic data (3.10) through (3.5),(3.6),(3.7),and (3.8), 
:r:espectively. The data AO(X m ),lP4(U,0,Xm ), and 
4I(u,O,x m) have the additional Significance of determin­
ing the optical properties of the r =:: ° null hypersurface 
through (3.13). 

In Sec. 4 the existence of Einstein-scalar space-times 
more general than those containing a nondiverging null 
hypersurface that also contain trapped surfaces was 
established. The main result of this section is that in a 
region {(u,r,x m)} of an Einstein-scalar space-time, 
trapped surfaces develop to the future in some neighbor­
hood of So if So is compact and everywhere on it the 
characteristic data po(x m ), P(x m) , 'o(x m ), and 4Io(xm) 
satisfy (3.11) and Po 2:: O. The metric variables, spin 
coefficients, physical Weyl tensor components, and scalar 
field are determined in some neighborhood of So by the 
characteristic data (4.6) through (4.1), (4. 2), (4. 3),and 
(4.4), respectively. The additional characteristic data 
for these space-times,po(xm),O"o(xm), \lIo(O,r,xm),and 
41(0, r ,xm), were shown to determine the optical proper­
ties of the generators of the u = 0 null hyper surface 
through (2. 22a) and (2. 22b). 
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Erratum: Absence of long-range order in thin films 
[J. Math. Phys.13, 1735 (1972)] 

John C. Garrison 

Lawrence Livermore Laboratory, University of California, P. O. Box 808, Livermore, 
California 94550 
(Received 17 January 1973) 

Several unfortunate misprints occurred in the above 
paper. Corrections are as follows: 

(1) In the first sentence of the second paragraph in 
Sec. 2, the expression 11:,tJ ~ £(,tJ) should be re­
placed by 11: m ~ £(,tJ). 

(2) In the last sentence of the same paragraph the ex­
pression "w-affiliated to U if" should be replaced 
by "w-affiliated to m if". 
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(3) The second sentence of the last paragraph in Sec. 3 
should read: "Since a state w exhibiting long-range 
order cannot be T-ergodic, it has a nontrivial de­
composition into T-ergodic states; and w can, for 
all physical purposes, be replaced by anyone of 
the states in the decomposition. " 

(4) In the last sentence in the first paragraph of Sec. 
5 the term "spin dependent" should be replaced by 
"spin independent". 

Copyright © 1973 by the American Institute of Physics 803 
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